
Higher

Computing Science

Software Design and Development

Sequential File Handling

 Name:_________________________

Contents
Sequential File Operations .. 3

Single Item per Line - Worked Example 4a ... 5

Comma Separated Value - Worked Example 4b ... 7

Practise Tasks .. 9

Practise Questions .. 10

Sequential File Operations

File handling is an alternative method to using the keyboard and display for input and

output.

The purpose of file operations is to enable information to be received directly from a

text file or sent directly to a text file.

Sending data to a file allows the output to be permanently stored.

The stored data could then be read back into the program the next time it is

executed.

Input from Sequential Files

If we wanted to input a score from a text file we would write:

OPEN “mytextfile.txt”

RECEIVE score FROM “mytextfile.txt”

CLOSE “mytextfile.txt”

Notice that the file has to be opened before it can be read and then closed again

when the input is complete.

Imagine a computer game kept a high scores table.

Without file handling, the high scores would only exist

until the game was turned off. The next time you

played, they would be gone.

File handling allows the scores to be saved by the

program and loaded in each time the game is started.

Output to Sequential Files

If we wanted to output a score to a text file we would write:

CREATE “mytextfile.txt”

OPEN “mytextfile.txt”

SEND score TO “mytextfile.txt”

CLOSE “mytextfile.txt”

Sequential File Operations

Open:

Create:

Read:

Write:

Close:

Initialises a file to prepare it to be read
from or written to

Establish a new file and give it a name

Copy data from a file and store it in
memory (variable/array)

Copy data memory (variable/array)
and place it in a file

Close a file

There are two methods of storing data in Sequential files.

• Single item per line

• Comma Separated Values (CSV)

Single Item per Line

Single item per line means that data would be stored

one item above another as shown.

In this format, reading a whole line will give you a single

piece of data.

Gemma

Wilson

14

Arran

James

Black

13

Bute

Comma Separated Values

CSV files store separate data items, each separated

with a comma. Commonly, data related to a single

person or thing would then be stored on separate lines.

In this format, reading a whole line will give you a single

piece of data.

Single Item per Line - Worked Example 4a

This example will allow a single user’s name

and age to be appended to a sequential file

each time the button is worked.

EOF is used to read in all the data currently in

the file and display it on screen.

Public Class Form1

Private Sub btnWrite_Click(sender As Object, e As EventArgs) Handles btnWrite.Click

 Dim userName As String
 Dim userAge As Integer

 userName = InputBox("Please enter your name")
 userAge = InputBox("Please enter your age")

 FileOpen(1, "H:\userdetails.txt", OpenMode.Append)

 PrintLine(1, userName)
 PrintLine(1, userAge)

 FileClose(1)

End Sub

[Continued over page]

Gemma,Wilson,14,Arran

James,Black,13,Bute

Append means the new

data will be added to the

end of the file

Private Sub btnRead_Click(sender As Object, e As EventArgs) Handles btnRead.Click

 Dim usernames(10) As String
 Dim userages(10) As Integer

 Dim counter As Integer

 FileOpen(1, "H:\userdetails.txt", OpenMode.Input)

 Do Until EOF(1)

 usernames(counter) = LineInput(1)
 userages(counter) = LineInput(1)

 counter = counter + 1

 Loop

 FileClose(1)

 For index = 0 To counter - 1

 txtOutput.AppendText(usernames(index) & vbTab & userages(index) &
vbNewLine)

 Next

End Sub

Notice the mode

is now Input

These lines repeat until

‘EOF’ – End of File

Comma Separated Value - Worked Example 4b

Do not start a new project.

Add two buttons to the previous example

as shown.

This example shows how to create a CSV

file using commas.

The data is then read in and separated

using the Split command.

Private Sub btnWriteCSV_Click(sender As Object, e As EventArgs) Handles
btnWriteCSV.Click

 Dim userName As String
 Dim userAge As Integer

 userName = InputBox("Please enter your name")
 userAge = InputBox("Please enter your age")

 FileOpen(1, "H:\userdetails2.txt", OpenMode.Append)

 PrintLine(1, userName & "," & userAge)

 FileClose(1)

 End Sub

[Continued over page]

This line writes data as before but uses

concatenation to insert a comma

between the data.

Private Sub btnReadCSV_Click(sender As Object, e As EventArgs) Handles
btnReadCSV.Click

 Dim usernames(10) As String
 Dim userages(10) As Integer

 Dim separated(2) As String

 Dim counter As Integer

 FileOpen(1, "H:\userdetails2.txt", OpenMode.Input)

 Do Until EOF(1)

 separated = Split(LineInput(1), ",")

 usernames(counter) = separated(0)
 userages(counter) = separated(1)

 counter = counter + 1

 Loop

 FileClose(1)

 For index = 0 To counter - 1

 txtOutput.AppendText(usernames(index) & vbTab & userages(index) &
vbNewLine)

 Next

 End Sub

This array will store the values separated from

a single CSV line. The index number should

be the same as the number of items per line.

Split places each item into a new position

in separated each time a comma is found.

Separated items are now

placed into the correct array

Practise Tasks

1. Create a program that asks 5 users to enter their first name, surname and

age. The program should store this information in a file.

The user should have the opportunity to display the stored information by

clicking a button.

2. A teacher requires a program to store test scores for pupils in a Computing

department. The program should ask for the pupil name and test score.

The test is out of 60 and the program should also calculate the percentage

score for each pupil.

Pupils do not sit tests on the same day so results should be entered

individually and stored in a file.

At any point, the teacher should be able to recall all stored results. At the start

of each session, the teacher would like to clear the stored data.

3. Create a program that collects the rainfall figures (in millimetres) for each

month. Details of the month name and rainfall will be entered on a monthly

basis.

The program should also determine whether the rainfall is low (below 5mm),

medium (5mm to 10mm) or high (above 10mm) for each month.

Each month, the details entered should be added to a file.

The user should have the option of restoring the saved data at any point.

When this information is displayed, a message indicating the average rainfall

for the year so far should also be displayed.

Practise Questions

Question 1 (SQP Qu 20c)

A science department has 120 candidates taking courses in biology, chemistry and

physics. The school wishes to identify how many candidates gained a grade ‘A’ in all

three sciences and to save their names to a separate file. An extract of the data is

shown below:

…

Ann Smith,A,B,B

Peter Irwin,B,C,A

Dan Wu,B,B,C

Stacey Williams,A,A,A

Callum Reid,A,F,B

Kevin Richardson,A,A,A

…

The top-level design for the program is shown below. 1. Get details from file 2. Find

and count names of students with three As 3. Display number of students with three

As 4. Save three As in file

Using a recognised design technique, refine step 4. (4)

