
Higher

Computing Science

Software Design and Development

Computational Constructs

 Name:_________________________

Contents
Computational Constructs .. 3

Pre-defined Functions ... 3

Worked Example 6a - Substrings .. 6

Practise Tasks .. 9

Worked Example 6b - Convert ASCII to Char / Char to ASCII .. 10

Worked Example 6c - Convert Floating Point to Integer .. 11

Practise Tasks .. 12

Worked Example 6d - Modulus ... 13

Practise Questions .. 14

Sub-Programs .. 15

Procedures .. 17

Worked Example 7 - Procedures ... 18

Worked Example 8 .. 23

Worked Example 9 .. 24

Functions ... 25

Worked Example 10 - Functions ... 26

Re-Using Sub-Programs .. 27

Functions v Procedures ... 29

Practise Task ... 30

Parameter Passing .. 31

What is parameter passing? ... 31

Actual and Formal Parameters ... 32

Scope of Variables ... 34

Global Variables .. 34

Local Variables .. 34

Practice Questions .. 36

Computational Constructs

Computational constructs are used in the writing of programs.

At Higher level, the constructs you must make use of are:

• Sequential File Operations

• Parameter Passing

• Subprograms (Procedures)

• Subprograms (Functions)

• File Handling

• Pre-Defined Functions

A table of computational construct examples can be found on the back page of this

book.

Pre-defined Functions

There are four new types of pre-defined function that you have to learn.

• Substrings

• Convert Floating Point to Integer

• Convert Characters to ASCII values

• Modulus (find remainder from division calculation)

Predefined functions are commands that can be used in any program to carry out a

calculation or format text and numbers in a particular way.

They are like shortcuts as they save you having to write your own lines of code to

carry out the function’s task.

Format of a function

 answerVariable = functionName (parameter1, parameter2, …)

This can be any variable
and is used to store the
answer returned by the
function.

The variable data type
must match the type of
value returned by the
function.

This is the name of the
pre-defined to be used.

See the names of
functions below.

Parameters are the inputs
required by the function.

A function can have none, one
or more parameters – it
depends on the function.

Function Purpose Returned
Data Type

Parameters

To convert floating-point numbers to integers

INT Converts a floating point
number(decimal) to
integer

Integer • a floating point number

To convert from ASCII to Character and vice versa

ASC Returns the ASCII value
of a character

Integer • a single character

CHR Returns the character of
an ASCII value

Character • an integer value

Modulus

MOD

Returns the remainder
of a division operation

Integer

To create substrings

LEFT Returns a substring of
characters starting from
the left

String • Main string

• Number of characters

RIGHT Returns a substring of
characters starting from
the right

String • Main string

• Number of characters

MID Returns a substring of
characters starting from
the middle

String • Main string

• Number of characters

• Starting point

Int: Use a function to convert a floating point number to an integer

 IntegerNumber = INT(decimalNumber)

Asc: Use a function to return the ASCII code value of a character

asciiValue = ASC(myCharacter)

Chr: Use a function to return the character of an ASCII value

myCharacter = CHR(asciiValue)

Mod: Use a function to return the remainder of 7 / 2

remainder = 7 MOD 2

Left: Use a function to extract the first 4 letters from a string

substring = LEFT(myString, 4)

Right: Use a function to extract the last 3 letters from a string

substring = RIGHT(myString, 3)

Mid: Use a function to extract characters 4 to 6 from a string

substring = MID(myString, 4, 3)

Worked Example 6a - Substrings

A substring is when part of a larger piece of text is

extracted. Substrings can be extracted from the beginning,

ending or middle of a larger string.

This example will demonstrate how the substring functions

(Left, Right and Mid) can be used to extract substrings.

There is also an example of how the mid function can be

used to validate an email address.

Left

Private Sub btnLeft_Click(sender As Object, e As EventArgs) Handles btnLeft.Click

 Dim mainString As String
 Dim subString As String
 Dim numChars As Integer

 mainString = InputBox("Enter some text")
 numChars = InputBox("Enter number of characters to extract")

 subString = Microsoft.VisualBasic.Left(mainString, numChars)

 txtOutput.AppendText(numChars & "letters from the left of " & mainString & " is " &
subString)
 txtOutput.AppendText(vbNewLine)

End Sub

Right

Private Sub btnRight_Click(sender As Object, e As EventArgs) Handles btnRight.Click

 Dim mainString As String
 Dim subString As String
 Dim numChars As Integer

 mainString = InputBox("Enter some text")
 numChars = InputBox("Enter number of characters to extract")

 subString = Microsoft.VisualBasic.Right(mainString, numChars)

 txtOutput.AppendText(numChars & "letters from the Right of " & mainString & " is " &
subString)
 txtOutput.AppendText(vbNewLine)
End Sub

Get substring

from the left

Get substring

from the right

Mid

Private Sub btnMid_Click(sender As Object, e As EventArgs) Handles btnMid.Click

Dim mainString As String
Dim subString As String

Dim startChar As Integer
Dim numChars As Integer

mainString = InputBox("Enter some text")
startChar = InputBox("What position do you want to start from?")
numChars = InputBox("Enter number of characters to extract")

subString = Mid(mainString, startChar, numChars)

txtOutput.AppendText(numChars & "letters from the middle of " & mainString & " is " &
subString)
txtOutput.AppendText(vbNewLine)

End Sub

Get substring from the middle

The following example shows how the mid function can be used to validate an email

address to ensure is contains an @ and dots.

Private Sub btnValidate_Click(sender As Object, e As EventArgs) Handles
btnValidate.Click

 Dim email As String
 Dim textLength As Integer
 Dim atCounter As Integer
 Dim dotCounter As Integer

 atCounter = 0
 dotCounter = 0
 email = InputBox("Please enter email address")
 textLength = Len(email)

 For index = 1 To textLength

 If Mid(email, index, 1) = "@" Then
 atCounter = atCounter + 1
 End If

 If Mid(email, index, 1) = "." Then
 dotCounter = dotCounter + 1
 End If

 Next

 If dotCounter >= 1 And atCounter = 1 Then
 MsgBox("email address is valid")
 Else
 MsgBox("No @ or not enough dots in email address")
 End If

End Sub
End Class

From the ‘email’ string

Start at a different char each loop (index)

Extract one char each time to check (1)

Practise Tasks

1. Create a program to count the number of users whose first name starts with

the letter A. The program should allow 10 users to enter their full first name.

At the end a message should indicate how many of the user’s names started

with the letter A.

2. A program is required to store the names of 5 football teams. The program

should also store a yes or a no against each team to indicate whether is

contains the word “north” anywhere in the name. Once all names have been

entered, the program should display the full list of teams together with a yes

or no.

 Worked Example 6b - Convert ASCII to Char / Char to ASCII

Characters can be converted into ASCII integer values

and vice versa. There are two pre-defined functions

which carry out these tasks:

• ASC

• CHR

ASC

Private Sub btnASCII_Click(sender As Object, e As EventArgs) Handles btnASCII.Click

 Dim myLetter As Char
 Dim asciiValue As Integer

 myLetter = InputBox("Enter a character")

 asciiValue = Asc(myLetter)

 MsgBox("ASCII value for " & myLetter & " is " & asciiValue)

End Sub

CHR

Private Sub btnChar_Click(sender As Object, e As EventArgs) Handles btnChar.Click

 Dim myLetter As Char
 Dim asciiValue As Integer

 asciiValue = InputBox("Enter a number")

 myLetter = Chr(asciiValue)

 MsgBox(asciiValue & " is the ASCII value for " & myLetter)

End Sub

Worked Example 6c - Convert Floating Point to Integer

Floating point numbers (Single) values can have the

numbers after the decimal point removed by

converting them to integers using the INT pre-

defined function. INT does not round a number – it

removes everything after the decimal point.

This example demonstrates a simple conversion and

also shows how INT can be used to validate that a

whole number has been typed in by the user.

INT

Private Sub btnConvert_Click(sender As Object, e As EventArgs) Handles
btnConvert.Click

 Dim myNumber As Single
 Dim outputNumber As Single

 myNumber = InputBox("Please enter a real number")
 outputNumber = Int(myNumber)

 txtOutput.AppendText(myNumber & " has changed to " & outputNumber)

End Sub

This code asks the user to enter a whole number. By comparing the input with the
INT of what was entered, the program can check that the user entered a whole
number.

Private Sub btnValidate_Click(sender As Object, e As EventArgs) Handles
btnValidate.Click

 Dim userNumber As Single

 Do
 userNumber = InputBox("Please enter a whole number")
 If userNumber <> Int(userNumber) Then
 MsgBox("Please enter a whole number")
 End If
 Loop Until userNumber = Int(userNumber)

 txtOutput.AppendText("Thank you - whole number entered")

End Sub
End Class

Practise Tasks

3. A program is required to convert ascii values into words. The user should

be prompted to repeatedly enter ascii values, one at a time until they enter

the ascii value for a full stop. The program should convert each value into

a character and add it to a stored string.

User input should be checked to ensure only printable ascii characters are

accepted and also that the number entered is a whole number.

When a full stop is detected, the program should output the final string to

display the message.

Worked Example 6d - Modulus

Modulus is used to calculate the remainder when a division

calculation is performed.

e.g.

15 mod 6 will produce the answer 3 because 15 ÷ 6 is 2

remainder 3.

Modulus is used to calculate the remainder when a division
calculation is performed

Private Sub btnStart_Click(sender As Object, e As EventArgs) Handles btnStart.Click

 Dim dividend As Integer
 Dim divisor As Integer
 Dim remainder As Integer

 dividend = InputBox("Please enter the dividend")
 divisor = InputBox("Please enter the divisor")

 remainder = dividend Mod divisor

txtOutput.AppendText("The remainder of " & dividend & " divided by " & divisor & "
is " &
 remainder)

End Sub
End Class

Practise Questions

Question 1 (SQP Qu 16)

Using a programming language of your choice, state the pre-defined function used to convert (2):

(i) Character to ASCII _______________________________

(ii) ASCII to Character________________________________

Question 2 (2019 Qu 2)

A string variable called month has been assigned the value ‘April’ and another string variable called

year has been assigned the value ‘2019’ as shown below.

Line 1 DECLARE month INITIALLY "April"

Line 2 DECLARE year INITIALLY "2019"

Line 3 ______________________________

The variable shortDate is to be assigned the value ‘Apr19’ using substring operations. Using a

programming language of your choice write line 3. (3)

Sub-Programs

Sub-programs are named blocks of code which can be run from within another part

of the program.

When a sub-program is used like this we say it is “called”.

Sub-programs can be called from any part of the program and can be used over

again.

A sub-program may be called several times during the execution of a single

program.

Example

This program works out the area of a room in a building.

 The Input Validation lines of code can be put into sub-programs and called

 by the main program.

Why Create Sub-Programs?

• Creating sub-programs makes the code more modular and readable.

• Modular code allows sections of code to be self-contained.

• Different sub-programs can be developed by different programmers without

variable name clashes

• Sub-programs can be re-used without any extra coding which saves time.

• Easier to identify errors.

Types of Sub-Program

There are two types of sub-program that can be used in procedural languages.

• Procedures

• Functions

Procedures and functions are self-contained sections of code that execute a

sequence of commands.

They are both given meaningful identifiers (names) which are used to call them.

Procedures
When procedures are called, variables (parameters) to be passed in or out of the procedure

are stated in brackets.

Procedures can pass any number of parameters in or out (or sometimes none).

Example

Consider creating the GetValidLength sub-program as a procedure.

Any number of parameters (variables) can be passed in or out of procedures.

The UserLen variable is declared in the main

program.

When the procedure is called, UserLen is

passed to it as a parameter

When it is called, the GetValidLength

procedure executes its lines of code

in order.

The length parameter is changed and

passed back to the main program.

Worked Example 7 - Procedures

This example demonstrates how to use procedures in a
program that calculates the area and perimeter of a
rectangle.

It is a very simple example to show where code should be
placed, how procedures are called and how parameter
passing works.

Program Specification

A program is required to all the user to enter the dimensions of a rectangle

(length and breadth). Using these dimensions, the program should calculate

the area and perimeter of the rectangle and then display both results on

screen.

Design

Algorithm

1. Get Dimensions

2. Calculate Sizes

3. Display Sizes

Step-wise Refinements

1.1 get rectangle length from keyboard

1.2 get rectangle breadth from keyboard

2.1 set area to length * breadth

2.2 set perimeter to (length * 2) + (breadth * 2)

3.1 display “The area is”, area, “ and the perimeter is ”, perimeter

Implementation

Enter the following code. As you do so, consider the main steps of this program,
identified at the design stage, in achieving its aims.

Public Class Form1

Private Sub btnStart_Click(sender As Object, e As EventArgs) Handles btnStart.Click

 Dim length As Integer
 Dim breadth As Integer
 Dim area As Integer
 Dim perimeter As Integer

 length = 0
 breadth = 0
 area = 0
 perimeter = 0

 length = InputBox("Enter the length")
 breadth = InputBox("Enter the breadth")

 area = length * breadth
 perimeter = (length * 2) + (breadth * 2)

 MsgBox("The area is " & area & " and the perimeter is " & perimeter)

End Sub

We will now create a procedure for each of the main steps.
Add the following code beneath the code for the button but before the End Class
statement.

Private Sub GetDimensions()

End Sub

Private Sub CalculateSizes()

End Sub

Private Sub DisplaySizes()

End Sub

Get

Dimensions

Calculate

Sizes

Display

Sizes

Now we have to move the relevant code to each procedure.

 Private Sub GetDimensions()

 length = InputBox("Enter the length")
 breadth = InputBox("Enter the breadth")

 End Sub

 Private Sub CalculateSizes ()

 area = length * breadth
 perimeter = (length * 2) + (breadth * 2)

 End Sub

 Private Sub DisplaySizes()

 MsgBox("The area is " & area & " and the perimeter is " & perimeter)

 End Sub

Parameters (arguments)

Next, look at the variables required by each procedure. These will now be called

parameters.

Also, decide whether each procedure will change the parameter’s value or not.

Any parameter changed by a procedure will be passed OUT – (indicated by ByRef)

Any parameter not changed by a procedure will be passed IN – (indicated by ByVal)

*Arrays should always be passed ByRef regardless if it will be changed or not by the

procedure.

Procedure Parameters Parameter value
changed by
procedure?

 Explanation

GetDimensions length
breadth

Yes
Yes

Changes from 0 to a value entered
by user

Changes from 0 to a value entered
by user

CalculateArea length

breadth
area

perimeter

No
No
Yes
Yes

Remains as value entered by user
Remains as value entered by user
Changes from 0 to result of length *

breadth
Changes from 0 to total size of sides

DisplayArea area
perimeter

No
No

Remains as result of length *
breadth

Remains as total size of sides

Data Flow

Using the information from the table, data flow can now be added to your algorithm

as shown:

1. Get Dimensions OUT: length, breadth

2. Calculate Sizes IN: length, breadth OUT: area, perimeter

3. Display Sizes IN: area, perimeter

Using the table, enter the correct parameters for each procedure in brackets next to
the procedure name.

Use ByRef or ByVal to specify how each parameter will be passed (changed / not
changed).

Private Sub GetDimensions(ByRef length, ByRef breadth)

 length = InputBox("Enter the length")
 breadth = InputBox("Enter the breadth")

End Sub

Private Sub CalculateSizes(ByVal length, ByVal breadth, ByRef area, ByRef perimeter)

 area = length * breadth
 perimeter = (length * 2) + (breadth * 2)

End Sub

Private Sub DisplaySizes(ByVal area)

 MsgBox("The area is " & area & " and the perimeter is " & perimeter)

End Sub

Your main btnStart sub-program should now only contain the following:

Private Sub btnStart_Click(sender As Object, e As EventArgs) Handles btnStart.Click

 Dim length As Integer
 Dim breadth As Integer
 Dim area As Integer
 Dim perimeter As Integer

 length = 0
 breadth = 0
 area = 0
 perimeter = 0

End Sub

Try running your program – you should notice that nothing actually happens.

Now add the code to call the procedures you have created.

It is very important here that parameters (in brackets) are listed in the same order as

in the procedure declaration.

Private Sub btnStart_Click(sender As Object, e As EventArgs) Handles btnStart.Click

 Dim length As Integer
 Dim breadth As Integer
 Dim area As Integer
 Dim perimeter As Integer

 length = 0
 breadth = 0
 area = 0
 perimeter = 0

 Call GetDimensions(length, breadth)
 Call CalculateSizes(length, breadth, area, perimeter)
 Call DisplaySizes(area, perimeter)

End Sub

You can run your program now and it should work as expected.

Try:

Changing the names of length, breadth and area in the main program

section only.

Does the program still work correctly? Can you explain this?

Private Sub btnStart_Click(sender As Object, e As EventArgs) Handles btnStart.Click

 Dim myLen As Integer
 Dim myBre As Integer
 Dim myArea As Integer
 Dim myPerim As Integer

 myLen = 0
 myBre = 0
 myArea = 0
 myPerim = 0

 Call GetDimensions(myLen, myBre)
 Call CalculateSizes(myLen, myBre, myArea, myPerim)
 Call DisplaySizes (myArea, myPerim)

 End Sub

Add these Call statements

Add these Call statements

Worked Example 8

This example demonstrates how procedures can be re-
used preventing code having to be written repeatedly.

Rather than writing input validation code for each range on

numbers, this example re-uses a procedure which can

validate different ranges each time.

Private Sub btnStart_Click(sender As Object, e As EventArgs) Handles btnStart.Click

 Dim lower As Integer
 Dim upper As Integer
 Dim userValue As Integer

 lower = InputBox("Please enter lower limit")
 upper = InputBox("Please enter upper limit")

 Call GetValidValue(lower, upper, userValue)

 lower = InputBox("Please enter a new lower limit")
 upper = InputBox("Please enter a new upper limit")

 Call GetValidValue(lower, upper, userValue)

 Call GetValidValue(20, 50, userValue)

End Sub

Private Sub GetValidValue(ByVal low, ByVal high, ByRef userValue)

 Do
 userValue = InputBox("Please enter a number between " & low & " and " &
high)
 If userValue < low Or userValue > high Then
 MsgBox("Invalid value, please re-enter")
 End If

 Loop Until userValue >= low And userValue <= high

 End Sub

Worked Example 9

This example demonstrates how procedures can declare
local variables whose scope is limited to that procedure only.

Also, notice that the array is always passed ByRef, even

when its values are not changed.

Public Class Form1

Private Sub btnStart_Click(sender As Object, e As EventArgs) Handles btnStart.Click

 Dim scores(5) As Integer
 Dim average As Single

 average = 0

 Call GetValidScores(scores)
 Call CalcAverage(scores, average)
 Call DisplayAverage(average)

End Sub

Private Sub GetValidScores(ByRef scores)

 For index = 1 To 5
 Do
 scores(index) = InputBox("Please enter a score (0-50)")
 If scores(index) < 0 Or scores(index) > 50 Then
 MsgBox("Invalid score entered")
 End If
 Loop Until scores(index) >= 0 And scores(index) <= 50
 Next

End Sub

Private Sub CalcAverage(ByRef scores, ByRef average)

 Dim total As Integer
 total = 0

 For index = 1 To 5
 total = total + scores(index)
 Next

 average = total / 5
End Sub

Private Sub DisplayAverage(ByVal average)

 MsgBox("The average score is " & average)

End Sub
End Class

total is a local variable – it can only be used or

updated within this procedure

scores array is passed ByRef here,

even though its values are changing

Functions

When functions are called, variables (parameters) to be passed in only are stated in brackets.

Functions can return only a single value.

The returned value from a function is assigned to a variable to be used in subsequent operations in

the program.

Example

Consider creating the GetValidLength sub-program as a function

The UserLen variable is declared in the main

program.

When the function is called, UserLen is used to

store the returned integer

When it is called, the

GetValidLength function

executes its lines of code in

order.

The length variable is returned

to the main program and stored

in UserLen

Worked Example 10 - Functions

This example demonstrates how to use functions in a
program that calculate the area and perimeter of a
rectangle.

We have to use two functions to calculate area and
perimeter. Compare this to example 5 where we used one
procedure to calculate the area and perimeter

Private Sub btnStart_Click(sender As Object, e As EventArgs) Handles btnStart.Click

 Dim length As Integer
 Dim breadth As Integer
 Dim area As Integer
 Dim perimeter As Integer

 length = 0
 breadth = 0
 area = 0
 perimeter = 0

 length = InputBox("Enter the length")
 breadth = InputBox("Enter the breadth")

 area = CalculateArea(length, breadth)
 perimeter = CalculatePerimeter(length, breadth)

 MsgBox("The area is " & area & " and the perimeter is " & perimeter)

End Sub

Function CalculateArea(ByVal length, ByVal breadth)

 Dim recArea As Integer

 recArea = length * breadth

 Return recArea

End Function

Function CalculatePerimeter(ByVal length, ByVal breadth)

 Dim recPerimeter As Integer

 recPerimeter = (2 * length) + (2 * breadth)

 Return recPerimeter

End Function
End Class

Re-Using Sub-Programs
The most efficient use of sub-programs is when they can be re-used .

When coding procedures and functions, consideration should be given to making them able to solve

any related problem rather than one specific problem.

e.g. a calculator that can only solve the calculation 2+2 would be very limited.

Example

The procedures below are almost identical except for the range of values they validate.

They could instead be made more generic by allowing the range of values to be changed each time it

is called.

The GetValidValue procedure can now be called to obtain a value within any range specified.

The implementation of a reusable function would look like this.

Functions v Procedures

Functions Procedures

Parameters only used for input values

Parameters used for input and output values

Returned value is stored in a variable

Formal parameters update the actual parameters to
return a value.

Only one output allowed

Multiple outputs allowed

Multiple input parameters allowed

Multiple input parameters allowed

Practise Task

4. A modular program is required to input the names of 10 cities together with

their average summer temperature and their average winter temperature. All

details should be stored in a record structure.

All average temperatures should be whole numbers between -20 and 50

degrees Celsius.

The program should find the details of the cities with the highest summer

temperature and those with the lowest winter temperature. Full details for

these cities should be written to a csv file.

Parameter passing with arrays of records

It is important to note that when arrays of records are passed as parameters,

the subprogram must include

• brackets to indicate it is an array

• AS to indicate the data type (all other arguments for this subprogram

must have data types explicitly stated as well)

Private Sub btnStart_Click(sender As Object, e As EventArgs) Handles
btnStart.Click

 Dim users(10) As recordDetails
 Dim counter As Integer
 counter = 0

 Call getDetails(users, counter)

End Sub

Private Sub getDetails(ByRef users() As recordDetails, ByRef counter As
Integer)

 users(counter).firstname = InputBox("Enter first name")
 users(counter).surname = InputBox("Enter surname")
 users(counter).age = InputBox("Enter age")

End Sub

Actual Parameters listed here as normal

Formal Parameters must

have empty brackets for the

array and all data types

declared

Read the information below before starting this task

Parameter Passing

What is parameter passing?

Parameters are

• the variables or values that are passed in or out of procedures.

• the variables or values that are passed into functions

Parameter passing allows variables to be used and updated by sub-programs.

The program below uses three procedures.

Procedures must be defined before they are called.

The variables in brackets are

parameters required by the

procedures stored in UserLen

These parameters are sent to the

procedures to be used.

Each parameter is known as an

argument.

This line CALLS the procedure

This section DEFINES the procedure

The order in which parameters are listed is important.

Actual and Formal Parameters

Parameters can be actual or formal.

Actual parameters contain the value which is to be passed to the sub-program’s formal parameter.

Formal parameters are used by the sub-program and contain a copy of or link to the values passed

from the actual parameters.

Notice the order of the parameters

here…

…must be the same as the order here

– but the names can be different

These are known as actual

parameters

These are known as formal

parameters

Scope of Variables
The scope of a variable is the area of code in which the variable is usable

i.e. how much of the program has access to it.

The scope of a variables can be either:

• Global

• Local

Global Variables

A global variable exists and can be accessed and changed from any part of the program.

Global variables do not have to be passed into

procedures as parameters because the procedure can

access it without doing so.

Global variables reduce modularity of a program and should be avoided wherever possible.

The use of global variables reduces modularity because:

• Different programmers could use conflicting variable names which would cause errors.

• Any procedure could accidentally alter a global variable as it doesn’t have to be passed
in to be used.

Local Variables

Local variables exist only within a procedure or function. They are declared within a sub-program

They are not passed in or out and can only be used within the sub-program they were declared in.

Local variables cannot be accessed from out with

their own sub-program which limits their scope.

It is always preferable to limit the scope of a variable to an individual sub-program wherever

possible.

Limiting the scope of a variable is done by:

• Using local variables which can only be accessed with their own sub-program.

• Using parameter passing to only pass to a sub-program the variables it requires.

Practice Questions

Question 1 (SQP Qu 5)

Describe one problem that can occur when using global variables in a program. (1)

Question 2 (2019 Qu 18)

a) Identify the formal parameter and identify the actual parameter. (2)

Question 3 (2017)

A program is used to calculate parking charges for a public car park.
The arrival and departure times are converted to and stored as real numbers, for
example: 06:30 hours will be converted to and stored as 6.5.

The function below is used to calculate the cost of parking for each car.

Line 1 FUNCTION calcCost(REAL departure, REAL arrival) RETURNS REAL
Line 1 DECLARE hours_parked INITIALLY 0
Line 3 DECLARE parking_charge INITIALLY 0
Line 4 SET hours_parked TO departure – arrival
Line 5 IF hours_parked <= 1 THEN
Line 6 SET parking_charge TO 2.75
Line 7 ELSE
Line 8 IF hours_parked <=2 THEN
Line 9 SET parking_charge TO 4.25
Line 10 ELSE
Line 11 SET parking_charge TO 6.25
Line 12 END IF
Line 13 END IF
Line 14 RETURN parking_charge
Line 15 END FUNCTION

This function is called using the line below:
SET cost TO calcCost (arrived, left)

Identify a formal parameter used in the code above and explain what is meant by a
formal parameter. (2)

