
National 5

Computing Science

Software Design and Development

Pupil Notes

 Name:_________________________

2 | P a g e

CONTENTS

Analysis Stage ... 4

Program Purpose.. 4

Functional Requirements .. 5

Inputs .. 5

Processes ... 5

Outputs ... 5

Design .. 7

Design Techniques ... 8

Graphical Design Techniques ... 8

Text-Based Design Techniques .. 8

Flow Charts ... 9

Structure Diagrams ... 12

Pseudocode .. 14

User Interface Design ... 16

Implementation ... 17

Variables and Data Types .. 18

Declaring ... 18

Meaningful identifier .. 19

Data Types .. 19

Assigning Values to variables ... 20

Outputting variables .. 20

Initialising Variables .. 21

Computational Constructs .. 22

Expressions .. 23

Concatenation ... 26

Selection ... 28

Iteration ... 34

Complex Conditions .. 36

Logical Operators .. 37

Pre-defined Functions ... 41

Data Structures ... 43

Declaring arrays (meaningful identifier and data type) 45

3 | P a g e

Array Size ... 45

Assigning Values to Arrays ... 46

Outputting Arrays .. 47

Initialising Arrays ... 47

When to use Arrays ... 48

Standard Algorithms ... 49

Running Total within a Loop .. 50

Input Validation ... 53

Traversing a 1D array ... 58

Testing ... 59

Error Types ... 60

Syntax Error .. 60

Execution Error ... 61

Logic Error .. 62

Test Data .. 63

Normal Test Data .. 63

Extreme Test Data .. 64

Exceptional Test Data ... 65

Test Table ... 66

Evaluation .. 67

Fitness For Purpose ... 68

Robustness ... 68

Efficient Use of Coding Constucts .. 69

Construct: Repetition ... 69

Construct: Selection .. 70

Construct: Logical Operators .. 70

Readability .. 71

Meaningful Identifiers .. 71

Internal Commentary ... 71

Indentation .. 72

White Space .. 72

4 | P a g e

ANALYSIS STAGE

PROGRAM PURPOSE

The Analysis Stage is where we investigate exactly what the software is supposed

to do.

It is important to read carefully what is required so that you have clear

understanding of the problem.

Example:

Capturing Olympus

In the board game ‘Capturing Olympus’, six players work as a team to
earn points. One point is earned if the six players score a combined
total of more than 50 hits. An additional point is earned if the average
number of hits is greater than or equal to 10.

Program analysis (purpose)
A program is required to determine the number of points earned by the
team. The program will ask the user to enter the number of hits scored
by each of the six players and store these values. When all six players’
hits have been entered, the program will calculate the total and
average number of hits. A message indicating the points earned is then
displayed to the user.

What does the client want the software to

do?

Who will use the software?

What are the inputs, processes and

outputs?

What hardware will the software use?

5 | P a g e

FUNCTIONAL REQUIREMENTS

The analysis stage help you to identify the program’s functional requirements.

Functional requirements are a list of tasks that the program must be able to do.

The functional requirements include identifying the program:

• Inputs

• Processes

• Outputs

Inputs

Inputs are data items that must be entered by the user. Information we have to ask

the user for. This is the data that the program will take in.

Processes

Processes are the things the program will do with the data items. Calculations,

formatting etc. are processes.

Outputs

Outputs are the data items that will be displayed by our program. This will usually be

the result of what the program is supposed to do.

6 | P a g e

Example:

Capturing Olympus

In the board game ‘Capturing Olympus’, six players work as a team
to earn points. One point is earned if the six players score a
combined total of more than 50 hits. An additional point is earned if
the average number of hits is greater than or equal to 10.

Program analysis (purpose)
A program is required to determine the number of points earned by
the team. The program will ask the user to enter the number of hits
scored by each of the six players and store these values. When all
six players’ hits have been entered, the program will calculate the
total and average number of hits. A message indicating the points
earned is then displayed to the user.

Inputs

• a valid number of hits scored by each of the six players

Processes

• calculate the total hits achieved by all six players

• calculate an average number of hits (total/6)

• determine if the six players have earned points

Outputs

• a message is displayed if one point has been earned

• a message is displayed if the additional point has been
earned

• a message is displayed if no points have been earned

Assumptions

• the number of hits a single player can achieve is greater than
or equal to 0 and less than or equal to 30

• the average should be displayed to two decimal places

• one point is earned if the total number of hits is greater than
50. An additional point is earned if the average number of hits
is greater than or equal to 10

7 | P a g e

READING REVIEW 1

Having read pages 4 – 6, answer the questions below in preparation.

1. What is the purpose of the analysis stage?

 __

 __

 __

2. Explain the following terms:

Input ___

 __

 Process__

__

Output__

__

3. Read the specification below

Draw arrows to show the inputs, processes and outputs on the diagram.

 Problem Specification

A program is required to calculate the average number of goals scored in four recent

football games.

Game 1 – 3 goals, Game 2 – 2 goals, Game 3 – 2 goals, Game 4 – 1 goal

The average will be found by adding the number of goals scored in each football

game and then dividing by four. The program should display the average number of

goals scored with a suitable message.

8 | P a g e

DESIGN

During the Design stage, a plan for how to solve the problem, as described in the

functional requirements, is created.

DESIGN TECHNIQUES

A design technique is a method of representing the program and explaining how it

should work.

Graphical Design Techniques

Graphical design techniques use diagrams made up of boxes or arrows to represent

the steps of the program.

Examples are:

• Flow Chart

• Structure Diagram

Text-Based Design Techniques

Text-based design techniques use numbered steps with written descriptions of each

task carried out by the program.

Examples are:

• Pseudocode

An advantage of graphical design

techniques is that they give a visual

representation of the program

structure and order of events. This

gives a clear overview of the design

and can make it easier to understand.

9 | P a g e

Flow Charts

A flowchart uses a variety of standard symbols with text to represent the order of

events required to solve a problem.

The symbols in a flowchart can be equated to programming constructs such as

assignment, selection and repetition.

Flow Chart Symbols

10 | P a g e

Flow Chart Examples

Example 1:Fixed Loop Example 2:Conditional Loop

Example 3:On-page connector

11 | P a g e

Example 4a: Separate Selection (IF)

When separate IF statements are used,
every condition will be checked, even
after a yes is found

Example 4b: Nested Selection (IF)

When nested IF statements are used,
conditions will only be checked until the
first yes is found.

12 | P a g e

Structure Diagrams

A structure diagram is a method of graphically representing the steps required to

solve a problem. Structure diagrams must be read from the top down from left to

right.

There are four types of notations used to represent the workings of the program:

Structure Diagram Examples

Example 1:Fixed Loop

13 | P a g e

Example 2a: Separate selection (IF)

Example 2b: Nested selection (IF)

When separate IF statements

are used, every condition will

be checked, even after a yes

is found

When nested IF statements

are used, conditions will only

be checked until the first yes

is found.

14 | P a g e

Pseudocode

Pseudocode is a kind of structured English for describing algorithms and is intended

for human reading.

It should not be written like program code and usually misses out things like

declaring variables.

Pseudocode might look a bit like program code but it doesn’t have the same strict

rules or syntax.

Example 1:

Algorithm

1 Initialise total length

2 Get valid number of tracks from user

3 Start fixed loop for each track

4 Get title and track length from user

5 Add track length to total

6 End fixed loop

7 Display track titles and track lengths

8 Display total length

Refinement

2.1 Start conditional loop

2.2 Get number of tracks from user

2.3 If number of tracks is not valid display error message

2.4 Repeat until the number of tracks entered is between 1

 and 20 inclusive

4.1 Get track title and store in names array

4.2 Get track length and store in length array

5.1 Add track length to total length

7.1 Start fixed loop for length of names array

7.2 Display “The name of track”, counter, “is”, track name

7.3 Display “The length of track”, counter, “is”, track

 length

7.4 End fixed loop

8.1 Display “The total length of the tracks is”, total length

15 | P a g e

Example 2:

Algorithm

1 Ask user to enter dimensions of a swimming pool in metres

2 Calculate volume of pool

3 Display message stating the volume of the pool

Refinement

1.1 Ask user to enter length of pool

1.2 Ask user to enter width of pool

1.3 Ask user to enter depth of pool

2.1 Volume is calculated as length * width * depth

3.1 Display “The volume of the pool is”, volume

16 | P a g e

USER INTERFACE DESIGN

The user interface is the part of a computer program that is visible to the user.

The point of designing a user interface for software is to show what input and output

is required, so that the programmer can implement it in their chosen code.

The type of user interface can depend on what the programming language is

capable of achieving. The examples below would probably be sketched by the

designer, rather than typed.

Example 1:

This interface design uses graphical text boxes and buttons

Example 2:

This is a simple text-based used interface.

17 | P a g e

READING REVIEW 2

Having read pages 8 – 16, answer the questions below in preparation.

1. Explain why it is important to spend time on the design stage during the

software development process.

__

__

__

__

2. Name a graphical design technique.

__

3. Name a text based design technique.

__

4. Explain the advantages of a graphical design technique over a text based

design technique.

__

__

__

__

5. Explain the purpose of a wireframe diagram.

__

__

__

__

18 | P a g e

IMPLEMENTATION

The implementation stage is where the programming actually takes place.

The user interface for the program is

created and design documentation is used

and converted into high level language

instructions.

VARIABLES AND DATA TYPES

A variable is used to store a single item of data in a program.

Imagine a variable as being like a box that you can only keep one thing in at a time.

Declaring

Creating a new variable is called declaring.

 DECLARE score AS INTEGER

 or DECLARE score INITIALLY 0

19 | P a g e

Meaningful identifier

Each variable must be given a meaningful identifier (name),

something that tells you what sort of thing it stores.

Data Types

Each variable also has to have a data type.

This decides whether the variable can store text or numbers for

example.

There are five main data types that variables can be used to store:

Data Type Contents Example

CHARACTER Single Letter “A”, “B”, “C”

STRING Several letters “Fred”, “Glasgow”

INTEGER Whole Number 2, 15, 18, 100

SINGLE (REAL) Real Number 2.45, 3.9, 12.994

BOOLEAN True or False TRUE / FALSE

This variable is used to

store a player’s score in a

game so we’ll call it

score.

The variable score is being

used to hold a whole

number so it is declared as

an integer data type.

20 | P a g e

Assigning Values to variables

When a value is assigned to a variable, this is like putting something into the box.

SET score TO 15

If a new value is now assigned to the same variable, the new value replaces

(overwrites) what is already there.

SET score TO 20

Outputting variables

To display the contents of a variable (output), we can use the variable’s name.

SEND score TO DISPLAY

The score variable now

contains the value 15

The score variable now

contains the value 20

(15 has been deleted)

20 would be displayed on the

screen because this is the

value that is in the score

variable.

21 | P a g e

Initialising Variables

It is good practice to set an initial value for variables at the start of a program, even if

this value is zero.

DECLARE score INITIALLY 0

A new variable should be declared for each piece of information you need to store in

your program.

Example:

How many variables are required for this program?

A program asks 100m sprinters for their name
and times in two heats. It then works out their
best time from the heats.

• Runner_name (String)

• Heat1_time (Real)

• Heat2_time (Real)

• Best_time (Real)

Score is now

set back to 0

22 | P a g e

COMPUTATIONAL CONSTRUCTS

Computational constructs are used by programs to allow them to control data, carry

out calculations, make decisions and perform repetitive tasks.

There are a number of constructs that you have to know for this course

Construct Example (SQA Reference Language)

Expressions to Assign
Values

SET total TO 0
SET answer TO “Computing”
RECEIVE username FROM (INTEGER) KEYBOARD

Expressions to Return
Values using Arithmetic
Operations

SET total TO num1 + num2
SET average TO total / 7

Expressions to
Concatenate Strings

SET answer TO “Computing” & “Science”
SET final TO answer & “is best”
SEND “Your answer is ” & answer

Selection IF total = 5 THEN
SET answer TO “Correct”

ELSE
SET answer TO “Wrong”

END IF

Logical Operators total > 5 AND total <10
total <= 5 OR total >=10
NOT(total > 10)

Iteration and Repetition REPEAT
RECEIVE total FROM (INTEGER) KEYBOARD

UNTIL total > 5 AND total <10

REPEAT index FROM 1 TO 10

SEND “Hi there” TO DISPLAY
END REPEAT

Pre-Defined Functions SET num TO ROUND(average, 2)
SET num TO RANDOM (6)
SET num TO LEN (answer)

23 | P a g e

Expressions

Expressions in programming are lines of code that carry out a calculation and assign

values to variables.

Expressions change the values of variables. You can normally recognise an

expression in a programming language because it will be a line of code containing

an equals (=) symbol.

Expressions to Assign Values

Expressions are used to assign a value to a variable. This could be a newly created

variable that is being initialised.

SET total TO 0

SET firstname TO “ ”

SET price TO 0.00

SET found TO FALSE

Or a variable that already contains a value and is being changed.

SET total TO 15

SET firstname TO “Fred”

SET price TO 2.49

SET found TO TRUE

24 | P a g e

Expressions to Return Values using Arithmetic Operations

Arithmetic Operations are simply calculations that are

performed within a program.

The simplest example of an arithmetic operation in a program is

adding two numbers together.

 2 + 2 = 4

Arithmetic Operations that can be performed in a program are:

• Addition

• Subtraction

• Multiplication

• Division

• Exponent

The result of an arithmetic operation expression is returned and usually gets

assigned to a variable so that the variable stores the answer to the calculation.

SET answer TO 2 + 2

Variables can also be used as part of the arithmetic operation.

RECEIVE num1 FROM (Integer) KEYBOARD

RECEIVE num2 FROM (Integer) KEYBOARD

SET answer TO num1 + num2

The answer
variable will now
store the value 4

The user enters two
numbers, stored in

variables

The answer variable
stores the result of the

expression

25 | P a g e

For addition, the + symbol is used as in maths. Subtraction also uses the - symbol

from maths. However the other operations use different symbols.

Operation Symbol Example

Addition + SET sum TO num1 + num2

Subtraction - SET difference TO num1 - num2

Multiplication * SET product TO num1 * num2

Division / SET quotient TO num1 / num2

Exponent ^ SET power TO num1 ^ num2

Examples:

SET answer TO num1 + num2

SET answer TO num1 - num2

SET answer TO num1 * num2

SET answer TO num1 / num2

SET answer TO num1 ^ num2

26 | P a g e

Concatenation

Concatenation is the joining together of two or more variables or the joining together

of text and a variable.

The ampersand (&) symbol is used to represent concatenation in some languages.

Note: Other programming languages may use different symbols for concatenation.

Output Variables with a Message

Concatenation allows us to add a meaningful message when outputting variables.

This makes a program more user-friendly.

Examples:

Three variables contain the values shown:

Variable answer firstName surname
Contents 43 Jane Jones

SEND “Answer is: ” & answer TO DISPLAY

SEND “Hello ” & firstName & surname TO DISPLAY

Notice in the second example, there is no space between the first name and

surname. This is because a space was not concatenated between them in the SEND

line.

To fix this problem, the following change should be made.

SEND “Hello ” & firstName & “ ” & surname TO DISPLAY

Output would be:
Answer is 43

Output would be:
Hello JaneJones

Output would be:
Hello Jane Jones

27 | P a g e

Appending Strings

Concatenation can also be used to allow a variable to add characters to itself.

Example:

In this example, firstname starts as an empty variable. Each time the expression

adds a new letter to firstname building.

letter Expression firstname

F SET firstName TO firstName & letter F

r SET firstName TO firstName & letter Fr

e SET firstName TO firstName & letter Fre

d SET firstName TO firstName & letter Fred

We cannot simple say: SET firstName TO letter otherwise the previous letters

would be overwritten each time.

By using SET firstName TO firstName & letter the each letter is added to the

end of current contents of the firstname variable.

28 | P a g e

READING REVIEW 2

Having read pages 17 – 27, answer the questions below in preparation.

1. What is a variable?

__

__

__

__

2. What data type would be used to store the following information:

Hello __________________

13.99 __________________

KA15 6DX __________________

10001 __________________

True ___________________

3. Explain the following terms:

Declaring

Initialising

Assigning

Concatenation

4. Complete the table below:

Operation Symbol

Subtraction

 +

Multiplication

 ^

Division

29 | P a g e

Selection

Selection constructs are used in a program to allow it to ask a question and take a

different path depending on the answer.

IF Statement

How do you decide each day whether you have to go to school or not? When you

wake up in the morning, the rule you use might be:

 IF today is a weekday THEN

 go to school

The commands we would use in our algorithm are very similar to this rule.

1. IF today = “weekday” THEN

2. Go to school

3. END IF

4. …

The commands between IF and END IF will only be carried out if the condition is

true.

In the example above, we only go to school if the condition in line 1 is true. If the

condition is false, we do nothing other than move on to line 4.

Line 1 is our condition

Line 2 is only carried out if the
condition is true

30 | P a g e

IF – ELSE (Separate IF)

We could decide that, on a day when we don’t go to school, we always go shopping.

Now, our morning rule might be:

IF today is a weekday THEN

 go to school

OR ELSE

go to the shops

We use the ELSE command to indicate what should happen when it is not a

weekday.

1. IF today = “weekday” THEN

2. Go to school

3. ELSE

4. Go shopping

5. END IF

6. …

The program then moves on to line 6 which is definitely carried out.

Line 1 is our condition

Line 2 is only carried out if the
condition is true

Line 4 is only carried out if the
condition is false

31 | P a g e

IF - ELSE IF – ELSE (Nested IF)

We could decide to do a different activity depending on whether it is Saturday or a

Sunday.

Now, our morning rule might be:

IF today is a weekday THEN

 go to school

BUT IF today is Saturday THEN

go to the shops

OR ELSE

stay at home

We use the ELSE IF command to indicate an alternative option if the first condition is

false. Else is then used if the second condition is also false.

1. IF today = “weekday” THEN

2. Go to school

3. ELSE IF today = “Saturday” THEN

4. Go shopping

5. ELSE

6. Stay at home

7. END IF

8. …

Notice, after a true condition is found, all other conditions are bypassed.

Line 1 is our first condition

Line 3 is only carried out if line
1 is false

Line 4 is only carried out if the
lines 1 and 3 are false

32 | P a g e

Simple conditions can use the following operations:

Operation Symbol Example

Less than < num1 < num2

Greater than > num1 > num2

Less than or equal to ≤ or <= num1 <= num2

Greater than or equal
to

≥ or > num1 => num2

Equal to = num1 = num2

Not equal to ≠ or <> num1 <> num2

33 | P a g e

Nested IF v Separate IF

It is more efficient to use nested IF statements instead of separate IFs, especially

when there are a lot of options.

1. IF score >= 3 THEN

2. SEND “Excellent” TO DISPLAY

3. ELSE IF score = 2 THEN

4. SEND “Good” TO DISPLAY

5. ELSE IF score = 1 THEN

6. SEND “Nice try” TO DISPLAY

7. ELSE

8. SEND “Try again” TO DISPLAY

9. END IF

1. IF score >= 3 THEN

2. SEND “Excellent” TO DISPLAY

3. END IF

4. IF score = 2 THEN

5. SEND “Good” TO DISPLAY

6. END IF

7. IF score = 1 THEN

8. SEND “Nice try” TO DISPLAY

9. END IF

10. IF score < 1 THEN

11. SEND “Try again” TO DISPLAY

12. END IF

If the score is 3 or more, line 2 is
executed and then lines 3 to 8 are
skipped.

If the score is 3 or more, line 2 is
executed and then the condition at
line 4 is checked.

In this example, if the score is 3 then it obviously cannot also be 2 or 1.

Nested IF statements are more efficient as they prevent code being executed when it

is unnecessary.

Separate IF statements will continue to check conditions even if it is impossible for

them to be true.

34 | P a g e

Iteration

Iteration or repetition is the process of repeating instructions in a program a desired

number of times.

Iteration is achieved in programming using loops.

Using loops in a program can drastically reduce the number of

lines of code you have to type.

Fixed Loops

Imagine you wanted to tell someone to walk up and down the stairs 5 times – but

you can only issue one instruction at a time.

1. Walk UP stairs

2. Walk DOWN stairs

3. Walk UP stairs

4. Walk DOWN stairs

5. Walk UP stairs

6. Walk DOWN stairs

7. Walk UP stairs

8. Walk DOWN stairs

9. Walk UP stairs

10. Walk DOWN stairs

There are actually only two commands here that are repeated over and over. What

are they?

A better method for this type of scenario is to use a loop and place the repeating

instructions inside it.

1. FOR loops FROM 1 TO 5 DO

2. Walk UP stairs

3. Walk DOWN stairs

4. END REPEAT

These instructions
will repeat exactly 5

times

35 | P a g e

Conditional Loops

What if we wanted to ask someone to walk up and down the stairs until lunch time?

How many times will they do it? Do we know?

For this scenario, we don’t know exactly how many times our

friend will be able to walk up and down the stairs.

It could be 5 times, 50 times, 200 times or more.

A Conditional Loop allows us to repeat instructions until a particular event

(condition) occurs in our program.

1. REPEAT

2. Walk UP stairs

3. Walk DOWN stairs

4. UNTIL time = 12:30

DO WHILE conditional loop

This loop starts repeating instructions. It checks the condition at the end of the loop.

This means that the repeated instructions will always be carried out at least once.

1. REPEAT

2. Walk UP stairs

3. Walk DOWN stairs

4. UNTIL time = 12:30

This means that the repeated instructions will always be carried out at least once.

These instructions
will be repeated

These instructions
will be repeated

36 | P a g e

WHILE conditional loop

This loop checks the condition at the start of the loop. It then starts repeating

instructions.

1. WHILE time <> 12:30 DO

2. Walk UP stairs

3. Walk DOWN stairs

4. END WHILE

This means that the repeated instructions may never run at all (if it is already 12:30

at the start of the loop).

Complex Conditions

Complex conditions are conditions that have two or more parts to them.

1. IF today = “Saturday” OR today = “Sunday” THEN

2. Go to the beach

3. ELSE

Notice that for each part of the complex condition, we must specify the variable.

We cannot write, IF today = “Saturday” OR “Sunday”.

These instructions
will be repeated

Line 1 contains a complex condition
with two things to check:
Is it Saturday or is it Sunday

37 | P a g e

READING REVIEW 4

Having read pages 29 – 36, answer the questions below in preparation.

1. What is a selection construct?

__

__

2. A computer program is used to check if a contestant will progress to the next

round of auditions. A program is required to display a congratulations

message if the contestant scores 20 or more points in their audition. If they

score less than 20 an unsuccessful message is displayed. Using pseudocode

code or a programming language show how this code would be implemented.

3. State the type of loop shown in the code below:

REPEAT

 RECEIVE pupilAge FROM (INTEGER) KEYBOARD

UNTIL pupilAge <= 18

4. State the type of loop shown in the code below:

FOR loops = 1 to 5 DO

 price = Inputbox(“Enter price”)

 Total = total + price

END FOR

5. Explain the difference between a fixed loop and a conditional loop.

__

__

__

38 | P a g e

Logical Operators

Logical Operations are used to create complex conditions. Complex conditions are

conditions that have two or more parts to them.

The main logical operators are:

• AND

• OR

• NOT

AND Logical Operator

AND checks that both parts of a condition is true

circle1 = black AND circle2 = black

OR Logical Operator

OR checks that either part of a condition is true

circle1 = black OR circle2 = black

1 2 1 2 1 2

TRUE FALSE FALSE

1 2

FALSE

1 2 1 2 1 2

TRUE TRUE TRUE

1 2

FALSE

39 | P a g e

Not Logical Operator

NOT gives the opposite answer

NOT (circle1 = black AND circle2 = black)

NOT (circle1 = black OR circle2 = black)

Logical Operations are normally used in IF statements or Conditional Loops.

IF condition1 AND condition 2

IF condition1 OR condition 2

IF NOT (condition1 OR condition 2)

UNTIL condition1 AND condition 2

DO WHILE condition1 OR condition 2

UNTIL NOT (condition1 OR condition 2)

1 2 1 2 1 2

FALSE TRUE TRUE

1 2

TRUE

1 2 1 2 1 2

FALSE FALSE FALSE

1 2

TRUE

40 | P a g e

Examples:

IF num1 > 3 OR num2 > 13 THEN

IF num1 > 2 AND num2 < 13 THEN

IF answer =“Yes OR answer =“No” THEN

IF NOT (num1 = 5 AND num2 <10) THEN

UNTIL first = “Fred” AND second = “Jones”

UNTIL answer = “Yes” OR answer = “No”

41 | P a g e

Pre-defined Functions

Predefined functions are commands that can be used in any

program to carry out a calculation or format text and numbers

in a particular way.

They are like shortcuts as they save you having to write your

own lines of code to carry out the function’s task.

Format of a function

 answerVariable = functionName (parameter1, parameter2, …)

This can be any variable
and is used to store the
answer returned by the
function.

The variable data type
must match the type of
value returned by the
function.

This is the name of the
pre-defined to be used.

See the names of
functions below.

Parameters are the inputs
required by the function.

A function can have none, one
or more parameters – it
depends on the function.

Types of Function

There are three functions you must be able to use in this course.

Function Purpose Returned
Data Type

Parameters

RANDOM Returns a random
number in a specified
range

Integer none

LENGTH Returns the number of
characters in a string

Integer • a character string

ROUND Returns a rounded real
number to a specified
number of decimal
places

Integer • A real number

• Decimal places required

42 | P a g e

Function Examples

Random

Use a function to generate a random number between 1 and 7

 chosenNumber = RANDOM() * 7

Length

Use a function to return the number of characters in a string stored in a

variable called sportsTeam.

teamLength = LENGTH(sportsTeam)

Round

Use a function to round a real number stored in a variable call average

to 2 decimal places.

roundedAvg = ROUND(average, 2)

43 | P a g e

READING REVIEW 5

Having read pages 38 – 42, answer the questions below in preparation.

1. Two squares, one coloured black and the other white are to be compared.

For each complex condition below, decide whether the result would be TRUE

or FALSE.

(a) Square1 = Black AND Square2 = White ____________________

(b) Square1 = White OR Square2 = White ____________________

(c) Square1 = Black AND Square2 = Black ____________________

(d) NOT (Square1 = White) OR Square2 = Black ____________________

2. State the purpose of each of the following pre-defined functions:

Random:___

Length:__

Round:___

1 2

44 | P a g e

DATA STRUCTURES

A 1D array is a data structure.

It is similar to a variable but it can store several items of data as long as they are of

the same type.

Imagine an array as being like a list of items that

must all be on the same subject.

45 | P a g e

Declaring arrays (meaningful identifier, data type and size)

Creating a new array is called declaring. When declaring an array, there are three

things that must be specified.

1. Like variables, each array must be given a meaningful identifier

(name), something that tells you what sort of thing it stores.

2. Each array also has to have a data type.

All of the items in an array must have the same data type.

3. Each array also has to have its maximum size specified.

Each position in the array has an index number to identify it.

DECLARE Ages AS ARRAY OF INTEGER INITIALLY []
or

DECLARE Ages INITIALLY [15,16,13,14,12]

This array is used to store

pupil ages so we’ll call it

ages.

(Integer)

An age is a whole

number so we will set this

array’s data type to

Integer

This array can store five

items so its size is 5

46 | P a g e

Assigning Values to Arrays

When a value is assigned to an array, the position you want to put it into must also

be given.

SET Ages[0] TO 15

Using a different index number will assign a value to a different position in the array.

SET Ages[3]TO 12

If a new value is assigned to a position that already contains a value, that value is

overwritten.

SET Ages[3]TO 14

Position 0 of the age

array now contains the

value 15.

Position 3 of the age

array now contains the

value 12

Position 3 of the age

array now contains the

value 14

(12 will be overwritten)

47 | P a g e

Outputting Arrays

To display the contents of an array position, we can use the array’s name and the

index position.

SEND Ages[3]TO DISPLAY

Initialising Arrays

An array can be initialised with values in order that it can be used without the user

having to enter data first.

DECLARE Ages INITIALLY [15,16,13,14,12]

14 would be displayed on

the screen because that

is the value that is

currently in position 3 of

the Ages array.

Score is now

set back to 0

48 | P a g e

When to use Arrays

A new array should be declared when there are a number of similar items of the

same type to be stored.

A program stores the

names and times of

10 100m sprinters.

49 | P a g e

READING REVIEW 6

Having read pages 43 – 48, answer the questions below in preparation.

1. Explain why a 1D array is useful in computer programs.

2. When declaring an array, what three features of the array must be specified?

50 | P a g e

STANDARD ALGORITHMS

A standard algorithm is a step-by-step way to solve a particular problem.

These standard steps can be used in many programs, with minor changes, where

the same problem needs to be solved.

There are three standard algorithms you have to learn in this course.

• Running Total within a Loop

• Input Validation

• Traversing a 1D Array

Running Total within a Loop

This algorithm is used to add up a series of values either entered at the keyboard or

contained in an array.

It is far more efficient to use a loop for this than adding the values as one long

calculation.

If you had 3 values to enter, you could just write.

SET total TO value1 + value2 + value3

What if you have 103 values? Or 2000 values?

Using the method above, if you were asked to add up five values entered at the

keyboard, you would have to write a lot of code.

The algorithm

1. DECLARE total INITIALLY 0

2. FOR index FROM 1 TO 5 DO
3. RECEIVE newValue FROM KEYBOARD
4. SET total TO total + newValue
5. END FOR

Total is a variable that is repeatedly added to with the newValue entered at the

keyboard.

51 | P a g e

How it works

The trace table below demonstrates how the variables, newValue and total, are

updated as the algorithm repeats.

Line number total explanation

1 0 total initialised to 0

3 5 5 typed in at the keyboard

4 5 total (0) + number (2) is 5

3 2 2 typed in at the keyboard

4 7 total (5) + number (2) is 7

3 3 3 typed in at the keyboard

4 10 total (7) + number (3) is 10

3 1 1 typed in at the keyboard

4 11 total (10) + number (1) is 11

3 2 2 typed in at the keyboard

4 13 total (11) + number (2) is 13

Running Total with Arrays

When an array contains a list of values to be added, the same algorithm can be

used.

To add up all of the ages in this array, the Running Total algorithm would look like

this:

FOR index FROM 1 TO 50 DO

total = total + ages(index)

END FOR

52 | P a g e

Running Total (Using Design Techniques)

 Structure Diagram Flow Chart

Pseudocode

1.1 set total to 0

1.2 start loop for each value

1.3 get value from user

1.4 add value to total

1.5 end loop

1.6 display total

53 | P a g e

Input Validation

Input Validation is a Standard Algorithm that can be used in any program.

The purpose of Input Validation is to check that a user has entered data that is in the

format that was expected.

Imagine your program asks the user to enter a

number between 10 and 20.

If the user enters a value out-with this range,

the Input Validation algorithm will keep asking

them to re-enter until they enter a valid

number.

The steps of the Input Validation algorithm are always the same, regardless of the

program you include it in.

The algorithm

1. REPEAT
2. RECEIVE newValue FROM KEYBOARD
3. IF newValue < 0 OR newValue > 10 THEN
4. SEND “Value is invalid” TO DISPLAY
5. END IF
6. UNTIL newValue >= 0 AND newValue <= 10

Line 1 – a conditional loop is started

Line 2 – a value is entered by the user

Line 3 – a complex condition is used to check if the entered value is valid

Line 4 – if the condition at line 3 is true, an error message is displayed

Line 6 – if the complex condition in the loop is false, the loop repeats from line 1

 – if the complex condition in the loop is true, the loop terminates.

54 | P a g e

Examples

Example: Collecting month number from user

1. REPEAT
2. RECEIVE month FROM KEYBOARD
3. IF month < 1 OR month > 12 THEN
4. SEND “Month is invalid” TO DISPLAY
5. END IF
6. UNTIL month >= 1 AND month <= 12

Notice that the only changes in this example is the name of the variable and

the range (1 to 12).

Example: Collecting age of secondary school pupils

1. REPEAT
2. RECEIVE age FROM KEYBOARD
3. IF age < 11 OR age > 18 THEN
4. SEND “Month is invalid” TO DISPLAY
5. END IF
6. UNTIL age >= 11 AND age <= 18

Again, all that has changed is the name of the variable and the range (11 to

18).

Example: Asking the user to enter only yes or no

1. REPEAT
2. RECEIVE response FROM KEYBOARD
3. IF response <> “yes” AND response <> “No” THEN
4. SEND “Response is invalid” TO DISPLAY
5. END IF
6. UNTIL response = “yes” OR response = “No”

This time, we are validating text entry instead of numbers so the conditions

are slightly different.

55 | P a g e

Explaining Input Validation Code

Example 1: Explain what happens if the user enters the value 10

1. REPEAT
2. RECEIVE month FROM KEYBOARD
3. IF month < 1 OR month > 12 THEN
4. SEND “Month is invalid” TO DISPLAY
5. END IF
6. UNTIL month >= 1 AND month <= 12

• The condition in line 3 would be evaluated as true because 10 is less than
11.

• Therefore line 4 would be executed, displaying an error message on screen

• The condition in line 5 would be evaluated as false because 10 is not
between 11 and 18 so the conditional loop will return to line 1.

• In line 2 the user would be asked to re-enter their age.

Example 2: Explain what happens if the user enters the value 15

1. REPEAT
2. RECEIVE age FROM KEYBOARD
3. IF age < 11 OR age > 18 THEN
4. SEND “Month is invalid” TO DISPLAY
5. END IF
6. UNTIL age >= 11 AND age <= 18

• The condition in line 3 would be evaluated as false because 15 is not less
than 11 or greater than 18.

• Therefore line 4 would not be executed

• The condition in line 5 would be evaluated as true because 15 is greater
than 11 so the conditional loop would terminate

56 | P a g e

Input Validation with Arrays

When using a loop to input data into an array from the keyboard, each item should

also be validated.

To validate each input in an array, a fixed loop must be added which repeats for the

size of the array.

1. FOR index FROM 1 TO 5 DO

2. REPEAT
3. RECEIVE age(index) FROM KEYBOARD
4. IF age(index) < 11 OR age(index) > 18 THEN
5. SEND “Month is invalid” TO DISPLAY
6. END IF
7. UNTIL age(index) >= 11 AND age(index) <= 18

8. END FOR

Fixed loop repeats for
each age to be entered

Every item inputted
is validated using
Input Validation

57 | P a g e

Input Validation (Using Design Techniques)

 Structure Diagram Flow Chart

Pseudocode

1.1 start conditional loop

1.2 get month from user

1.3 if month is not between 1 and 12 then

1.4 display error message

1.5 end if
1.6 repeat until month is between 1 and 12

End

58 | P a g e

Traversing a 1D array

In a large array it may not be practical to input information into each position

individually.

 This array would require 50 lines

 of code just to fill it.

Using a loop makes life much easier.

FOR Loop FOR EACH Loop

FOR index FROM 1 TO 50 DO
RECEIVE age(index) FROM KEYBOARD

END FOR

FOR EACH age FROM ages

RECEIVE age FROM KEYBOARD

END FOREACH

index is used here to keep track on the current
position in the array. Index will start at 1 and
increment during each loop until it gets to 50.

For Each starts at position 1 in the array
and repeats until it reaches the end of the
array.

SET ages(1) TO 12

SET ages(2) TO 14

SET ages(3) TO 11

SET ages(50) TO 13

…

59 | P a g e

READING REVIEW 7

Having read pages 50 – 58, answer the questions below in preparation.

1. State the purpose of a Running Total algorithm.

2. Write the steps of the running total algorithm.

3. State the purpose of the Input Validation algorithm.

4. Write the steps of the Input Validation algorithm.

5. Which programming construct is used to traverse a ID array and why?

60 | P a g e

TESTING

It is important to test your program to make sure that it:

• Runs without crashing

• Produces the correct output.

ERROR TYPES

There are three types of error that can occur in a program.

• Syntax Error

• Execution Error

• Logic Error

Syntax Error

Syntax is the rules of how a programming language must be written.

If code is written that breaks the programming language rules then a syntax error

occurs.

The program will not run at all if there is a syntax error in the code.

Examples

Example 1 Example 2 Example 3
FOR index 1 TO 10

NEXT index

DIM first IS STRING IF first = 10 OR 20

END IF

There is an equals sign
missing after the word
index.

FOR index = 1 TO 10

NEXT index

The word IS should be
AS

DIM first AS STRING

A complex condition must
contain complete conditions
on each side of the logical
operator (OR).

IF first = 10 OR first = 20

61 | P a g e

Execution Error

An execution error occurs when the program tries to do something impossible during

while the program is running.

An execution error will cause the program to crash mid-way through. Usually an

error message will appear explaining the problem.

Examples

Example 1 Example 2 Example 3
DIM myArray(5) AS INTEGER

FOR loops 1 TO 10

 myArray(loops) = 0

NEXT index

DIM score AS INTEGER

score = “Henry”

DIM result AS INTEGER
DIM value AS INTEGER

value = 0
result = 0

result = 50 / value

Error: Trying to access an
array position bigger than the
size of the array.

Explanation:
The value of the loops
variable will increase until it
gets to 10.

When it reaches 6, this will
exceed the size of the array
which only has 5 positions.

Error: Trying to assign
string data to an integer
variable.

Explanation:
The score variable has been
declared as an Integer data
type.

When the program tries to
store a string value in score,
it cannot be done.

Error: Trying to divide by 0
which is impossible.

Explanation:
The value variable has
been initialised to 0.

When the program tries to
divide 50 by the contents
of value (0), it cannot be
done.

62 | P a g e

Logic Error

A logic error occurs when the program runs normally, does not crash, but produces

an incorrect output (the wrong answer).

A logic error will not cause the program to crash. These type of errors can be difficult

to fix because no error messages are produced.

Examples

total = score1 * score2

Msgbox(“score1 + score2 is ” & total)

IF answer1 = “A” AND answer1= “B” THEN
result = “pass”

ELSE
result = “fail”

END IF

The expression multiplies the scores
instead of adding them, giving the
wrong output.

The first line should be:

total = score1 + score2

The complex condition (line 1) is checking for
answer1 to contain A and B at the same time.

It is impossible for a variable to contain both
A and B so the result will always be FAIL.

The first line should use an OR instead of
AND:

IF answer1 = “A” OR answer1= “B” THEN

63 | P a g e

TEST DATA

To ensure that a program is tested comprehensively and thoroughly, three types of

test data should be used.

• Normal
• Extreme
• Exceptional

Normal Test Data

Normal test data checks that the program will accept the inputs from the user that it

is supposed to.

The following examples are slightly different as they deal with real world inputs.

Normal data is any data that is possible (but not those on the boundary where a

change takes place).

A program is designed to ask the user
to enter a number between 10 and 20

Normal data in this case would be:
11,12,13,14,15,16,17,18 and 19

A program is designed to ask the user to enter either “Yes” or
“No”

Normal data in this case would be:
Yes, No

A program is designed to ask the user
to enter a number between 1 and 100

Normal data in this case would be:
all numbers from 2 to 99

A sensor detects the speed of a car
and sends an alert if it is travelling

over 70mph

Normal data in this case would be:
0 to 69 and 72 to 150 approx

A sensor detects the temperature in a
school and turns the heating on if it

drops to 18o or below.

Normal data in this case would be:
approx -50 to 17 and 20 to 60 approx

It could be possible for a car to travel at

0mph or 150mph so these are normal

values

It could be possible for the temperature

to be -50o or 60o so these are normal

values

64 | P a g e

Extreme Test Data

Extreme test data checks that the program will accept the inputs from the user that

are on the boundaries of what it is acceptable.

The following examples are slightly different as they deal with real world inputs.

Extreme data is any data that is on the boundary between one event and another.

A program is designed to ask the user
to enter a number between 10 and 20

Extreme data in this case would be:
10 and 20

A program is designed to ask the user to enter a number
between 0 and 50

Extreme data in this case would be:
0 and 50

A program is designed to ask the user
to enter a number between 1 and 100

Extreme data in this case would be:
1 and 100

A sensor detects the speed of a car
and sends an alert if it is travelling

over 70mph

Extreme data in this case would be:
70 and 71

A sensor detects the temperature in a
school and only turns the heating on

if it is 18o or below.

Extreme data in this case would be:
18 and 19

70 is the last value that does not cause

the alert to be sent.

71 is the first value that causes the alert

to be sent

18 is the last temperature that causes

the heating to be on.

19 is the first temperature that causes

the heating to be off.

65 | P a g e

Exceptional Test Data

Exceptional test data checks that the program uses input validation so that it will

not accept inputs from the user that it is not supposed to.

The following examples are slightly different as they deal with real world inputs.

Extreme data is any data that is on the boundary between one event and another.

A program is designed to ask the user
to enter a number between 10 and 20

Exceptional data in this case would be:
…7,8,9 and 21,22,23…

A program is designed to ask the user to enter either “Yes” or “No”

Exceptional data in this case would be:

“Maybe”, “Perhaps”, 10

A program is designed to ask the user
to enter a number between 1 and 100

Exceptional data in this case would be:
…-2,-1, 0 and 101, 102, 103…

A sensor detects the speed of a car
and sends an alert if it is travelling

over 70mph

Extreme data in this case would be:
-100, 1000000, “Fred”

A sensor detects the temperature in a
school and only turns the heating on

if it is 18o or below.

Extreme data in this case would be:
-500, 1000, “Jane”

These values are impossible speeds for

a car to be travelling at.

Entering a text value when a number is

expected is also exceptional.

These values are impossible

temperatures for a school to be at.

Entering a text value when a number is

expected is also exceptional.

66 | P a g e

TEST TABLE

A test table is used to record tests carried out, expected results and actual results. A

test table should use all three types of test data.

Expected results are worked out manually without using the program. The same

inputs are then entered into the program to give the actual results. If both match

then the test has passed.

Example

This program should accept three test scores between 0 and 50 and calculate the

total and average.

Test
No.

Reason Test Data Expected
Result

Actual
Result

Test Result

1 Normal
Test

Score1: 34
Score2: 45
Score3: 29

Total: 108
Average: 36

Total: 108
Average: 36

PASS

2 Normal
Test

Score1: 12
Score2: 19
Score3: 2

Total: 33
Average: 11

Total: 33
Average: 11

PASS

3 Extreme
Test

Score1: 50
Score2: 50
Score3: 50

Total: 150
Average: 50

Total: 150
Average: 50

PASS

4 Extreme
Test

Score1: 0
Score2: 0
Score3: 0

Total: 0
Average: 0

Total: 150
Average: 50

PASS

5 Exceptional
Test

Score1: 65
Score2: 52
Score3: 90

Not Accepted Total: 207
Average: 69

FAIL

6 Exceptional
Test

Score1: -1
Score2: -40
Score3: -
100

Not Accepted Not Accepted PASS

Test 5 has failed because the program has accepted invalid score inputs (all above

50) when it should have asked the user to re-enter.

67 | P a g e

READING REVIEW 8

Having read pages 59 – 66, answer the questions below in preparation.

1. Using examples, explain the following terms:

Normal Test Data

__

__

__

Extreme Test Data

__

__

__

Exceptional Test Data

__

__

__

Syntax Error

__

__

Execution Error

__

__

Logic Error

__

__

68 | P a g e

EVALUATION

During the Evaluation Stage, the overall success of the entire

project is considered.

An evaluation report would discuss:

• Fitness for Purpose

• Robustness

• Efficient use of coding constructs

• Readability

FITNESS FOR PURPOSE

A program is fit for purpose if it:

• Carries out all the functional requirements from the analysis stage

o Can the program do everything is was expected to do?

o Are all of its expected processes present and working?

• Passes all the tests carried out at the testing stage.

o Do all tests produce the correct expected outputs?

ROBUSTNESS

A program is robust if it will has the ability to cope with errors or incorrect input for

the user without the program crashing.

Example

A program has been developed to ask the user to input their age as an

integer. However, a user accidentally types their age in as a string (e.g.

twelve). If the program was to crash then it would not be a robust program.

Instead of crashing, a robust program will use input validation to handle the error

and provide a helpful message to the user.

69 | P a g e

EFFICIENT USE OF CODING CONSTUCTS

An efficient program is one which carries out only as many instructions as

necessary to complete its purpose.

There are a number of ways to make code more efficient and reduce how many lines

of code are carried out.

Construct: Repetition

The use of repetition can greatly reduce the number of lines of code that have to be

typed.

This program finds the average of 10
numbers.

DECLARE total INITIALLY 0

RECEIVE number FROM KEYBOARD

SET total TO total + number

RECEIVE number FROM KEYBOARD

SET total TO total + number

RECEIVE number FROM KEYBOARD

SET total TO total + number

RECEIVE number FROM KEYBOARD

SET total TO total + number

RECEIVE number FROM KEYBOARD

SET total TO total + number

SET average TO total / 5

This program does exactly the same but
uses more efficient constructs.

DECLARE total INITIALLY 0

REPEAT 10 TIMES

RECEIVE number FROM KEYBOARD

SET total TO total + number

END REPEAT

SET average = total / 10

This can also be done using a 1D array.

Without an array, multiple variables
are needed to store all the values.

DECLARE total INITIALLY 0

RECEIVE number1 FROM KEYBOARD

RECEIVE number2 FROM KEYBOARD

RECEIVE number3 FROM KEYBOARD

RECEIVE number4 FROM KEYBOARD

RECEIVE number5 FROM KEYBOARD

SET total TO number1 + number2 +

number3 + number4 + number5

SET average TO total / 5

An array allows all the numbers to be stored in a
single data structure.

DECLARE number INITIALLY []

FOR counter FROM 1 TO 5 DO

RECEIVE number[counter)]

SET total TO total + number[counter]

END FOR

SET average TO total/5

70 | P a g e

Construct: Selection

Choosing from a number of possible alternatives when using selection can make

code more efficient, however, it is not always obvious which is more efficient.

These two programs decide the grade that a candidate is given, depending on the

mark they received in the exam.

This uses four separate IF constructs,
one after another, with the use of
complex conditional statements.

IF mark < 50 THEN

SET grade TO D

END IF

IF mark>=50 AND mark<=59 THEN

SET grade TO C

END IF

IF mark>=60 AND mark<=69 THEN

SET grade TO B

END IF

IF mark>=70 THEN

SET grade TO A

END IF

This uses nested IF constructs with
simple conditional statements.

IF mark>=70 THEN

SET grade=A

ELSEIF mark>=60 THEN

SET grade=B

ELSEIF mark>=50 THEN

SET grade=C

ELSE

SET grade=D

END IF

This program always carries out four
comparisons, regardless of the values
stored in mark.

This program carries out either one, two
or three comparisons, depending on the
values stored in the mark.

Construct: Logical Operators

Logical operators can be useful when creating complex conditions, rather than using

multiple simple conditions.

This program uses two simple
conditional statements.

IF X > 4 THEN

IF Y < 6 THEN

SET quadrant TO 2

END IF

END IF

This program uses one complex
conditional statement.

IF X > 4 AND Y < 6 THEN

SET quadrant TO 2

END IF

71 | P a g e

READABILITY

It is important for programs to be written in a readable fashion so that they can be

easily understood.

Some methods of making a program readable are:

• Use meaningful identifiers (variable names)

• Use internal commentary

• Use indentation

• Use plenty of white space

Meaningful Identifiers

Giving variables sensible names makes it easier to identify what they are being used

to store.

If we were to write a program using
variable names such as X, Y and Z then
it is difficult to know what values they
are intended to store.

DECLARE x INITIALLY 0

DECLARE y INITIALLY 0

DECLARE z INITIALLY 0

SET x TO y * z

It is much better to use sensible variable
names like total, PupilCost and pupils.

DECLARE total INITIALLY 0

DECLARE pupilCost INITIALLY 0

DECLARE pupils INITIALLY 0

SET total TO pupilCost * pupils

Internal Commentary

Internal commentary is used to provide

descriptions of what lines or sections of

code do.

Internal commentary is written between the

lines of actual code but is ignored by the

computer when executing the program.

‘School Trip Costs
‘By J Bloggs
‘01/04/2018

‘declare variables
Dim total as Single

Dim PupilCost as Single

Dim pupils as Integer

‘calculate total cost
total = PupilCost * Pupils

72 | P a g e

Indentation

Indentation helps to give the program listing a structure.

It makes it easier to identify control constructs in the code, such as which sections of

code are repeated and which instructions are selected for execution in selection

constructs.

Without indentation, it is difficult to see
the content of IF statements...

IF mark < 50 THEN

SET grade TO D

END IF

IF mark>=50 AND mark<=59 THEN

SET grade TO C

END IF

…or loops.

REPEAT 10 TIMES

RECEIVE number FROM KEYBOARD

SET total TO total + number

END REPEAT

Using indentation, the start and end IF
statements...

IF mark < 50 THEN

SET grade TO D

END IF

IF mark>=50 AND mark<=59 THEN

SET grade TO C

END IF

…and loops is much clearer.

REPEAT 10 TIMES

RECEIVE number FROM KEYBOARD

SET total TO total + number

END REPEAT

White Space

White space is used to make code more readable by leaving blank lines between

main steps of the program.

This makes it easier to identify the different sections of the program.

Without white space, it is difficult to pick
out the different stages of the program.

DECLARE pupilName INITIALLY “”

DECLARE pupilAge INITIALLY 0

DECLARE number INITIALLY []

RECEIVE pupilName FROM KEYBOARD

RECEIVE pupilAge FROM KEYBOARD

FOR counter FROM 1 TO 5 DO

RECEIVE score[counter)]

SET total TO total +

score[counter]

END FOR

SET average TO total/5

White space helps to separate the
different stage.

DECLARE pupilName INITIALLY “”

DECLARE pupilAge INITIALLY 0

DECLARE number INITIALLY []

RECEIVE pupilName FROM KEYBOARD

RECEIVE pupilAge FROM KEYBOARD

FOR counter FROM 1 TO 5 DO

RECEIVE score[counter)]

SET total TO total +

score[counter]

END FOR

SET average TO total/5

73 | P a g e

READING REVIEW 9

Having read pages 60 – 72, answer the questions below in preparation.

1. Explain the term fit for purpose.

__

__

__

2. Explain the term robustness.

__

__

__

3. Explain the term readability.

__

__

__

4. Why is it important to have readable code?

__

__

__

5. State four ways in which code can be made more readable.

__

__

__

__

