
Higher

Computing Science

Software Design and Development

Testing & Evaluation

NAME:_________________________

Contents

Name:_________________________... 1

Testing Stage ... 3

Test Plan .. 3

Error Types ... 5

Syntax Error .. 5

Execution Error ... 6

Logic Error .. 7

Debugging .. 8

Dry Run ... 8

Trace Table ... 9

Trace Tools ... 11

Breakpoints ... 11

Watchpoint .. 12

Practise Questions .. 13

Evaluation Stage .. 16

Fitness for Purpose ... 16

Efficient use of coding constructs ... 16

Usability .. 16

Maintainability ... 17

Robustness ... 17

Practise Questions .. 18

TESTING STAGE

The Testing Stage is necessary in order to identify and correct and errors in the

source code.

It is important that a carefully considered test plan is created. It is vital that a test

plan is produced before the solution is implemented to ensure the software is tested

systematically.

The test plan includes:

• Details of what is to be tested

• Test data values

• Expected outputs

• Type of testing

TEST PLAN

The test plan should ensure that testing is comprehensive.

Comprehensive testing is when the program is tested as thoroughly and completely

as possible.

Ideally, exhaustive testing is used where every possible input and route through the

program is tested – but this is not always practical or possible.

Comprehensive testing should involve using a range of normal, extreme and

exceptional test data

A test table is used to record tests carried out, expected results and actual results. A

test table should use all three types of test data.

Expected results are worked out manually without using the program. The same

inputs are then entered into the program to give the actual results. If both match

then the test has passed.

Example

This program should accept three test scores between 0 and 50 and calculate the

total and average.

Test
No.

Reason Test Data Expected
Result

Actual
Result

Test Result

1 Normal
Test

Score1: 34
Score2: 45
Score3: 29

Total: 108
Average: 36

Total: 108
Average: 36

PASS

2 Normal
Test

Score1: 12
Score2: 19
Score3: 2

Total: 33
Average: 11

Total: 33
Average: 11

PASS

3 Extreme
Test

Score1: 50
Score2: 50
Score3: 50

Total: 150
Average: 50

Total: 150
Average: 50

PASS

4 Extreme
Test

Score1: 0
Score2: 0
Score3: 0

Total: 0
Average: 0

Total: 150
Average: 50

PASS

5 Exceptional
Test

Score1: 65
Score2: 52
Score3: 90

Not Accepted Total: 207
Average: 69

FAIL

6 Exceptional
Test

Score1: -1
Score2: -40
Score3: -
100

Not Accepted Not Accepted PASS

Test 5 has failed because the program has accepted invalid score inputs (all above

50) when it should have asked the user to re-enter.

ERROR TYPES

There are three types of error that can occur in a program.

• Syntax Error

• Execution Error

• Logic Error

Syntax Error

Syntax is the rules of how a programming language must be written.

If code is written that breaks the programming language rules then a syntax error

occurs.

The program will not run at all if there is a syntax error in the code.

Examples

Example 1 Example 2 Example 3
FOR index 1 TO 10

NEXT index

DIM first IS STRING IF first = 10 OR 20

END IF

There is an equals sign
missing after the word
index.

FOR index = 1 TO 10

NEXT index

The word IS should be
AS

DIM first AS STRING

A complex condition must
contain complete conditions
on each side of the logical
operator (OR).

IF first = 10 OR first = 20

Execution Error

An execution error occurs when the program tries to do something impossible during

while the program is running.

An execution error will cause the program to crash mid-way through. Usually an

error message will appear explaining the problem.

Examples

Example 1 Example 2 Example 3

DIM myArray(5) AS INTEGER

FOR loops 1 TO 10

 myArray(loops) = 0

NEXT index

DIM score AS INTEGER

score = “Henry”

DIM result AS INTEGER
DIM value AS INTEGER

value = 0
result = 0

result = 50 / value

Error: Trying to access an
array position bigger than the
size of the array.

Explanation:
The value of the loops
variable will increase until it
gets to 10.

When it reaches 6, this will
exceed the size of the array
which only has 5 positions.

Error: Trying to assign
string data to an integer
variable.

Explanation:
The score variable has been
declared as an Integer data
type.

When the program tries to
store a string value in score,
it cannot be done.

Error: Trying to divide by 0
which is impossible.

Explanation:
The value variable has
been initialised to 0.

When the program tries to
divide 50 by the contents
of value (0), it cannot be
done.

Logic Error

A logic error occurs when the program runs normally, does not crash, but produces

an incorrect output (the wrong answer).

A logic error will not cause the program to crash. These type of errors can be difficult

to fix because no error messages are produced.

Examples

total = score1 * score2

Msgbox(“score1 + score2 is ” & total)

IF answer1 = “A” AND answer1= “B” THEN
result = “pass”

ELSE
result = “fail”

END IF

The expression multiplies the scores
instead of adding them, giving the
wrong output.

The first line should be:

total = score1 + score2

The complex condition (line 1) is checking for
answer1 to contain A and B at the same time.

It is impossible for a variable to contain both
A and B so the result will always be FAIL.

The first line should use an OR instead of
AND:

IF answer1 = “A” OR answer1= “B” THEN

DEBUGGING

Debugging is the process of finding and correcting errors.

Some types of error are easier to identify than others because the programming

environment will help.

• The program will not run at all if there is a syntax error

• The program will stop running if an execution error is encountered

Logic errors are more difficult to find because the program will run but will produce

incorrect results. There are a number of debugging techniques that can be used to

identify logic errors.

• Dry Run

• Trace Table

• Trace Tools

• Breakpoints

• Watchpoints

Dry Run

A Dry Run involves manually stepping through

each line of code using test data.

As lines of code that make changes to variables

are reached, these changes are recorded using a

table.

This should highlight positions in the code where variables are changing to

unexpected values.

Trace Table

A trace table is similar to the table used to record variable values during a dry run.

Trace is often used to record the changes to variables when testing an algorithm for

a specific sub-program.

A trace table allows the tester to check the result of a number of different values of a

variable.

Line by Line recording

To record each variable change, line by line, the following steps should be followed.

• List each variable along the top.

• Work through the program line by line and record the changes in each line

where a change is made to a variable.

• If the program loops, you must repeatedly work through the lines within the

loop

Example

Line 1 FUNCTION findMinimum (ARRAY OF INTEGER list)

RETURNS INTEGER

Line 2 DECLARE min INITIALLY list[0]

Line 3 FOR index FROM 1 TO length(list)-1 DO

Line 4 IF min < list[index] THEN

Line 5 Min = list[index]

Line 6 END IF

Line 7 END FOR

Line 8 RETURN min

Line 9 END FUNCTION

Line List Min index

1 [4,5,2,1,3]

2 4

3 1

3 2

5 2

3 3

5 1

3 4

Breakpoint Recording

If a breakpoint is set at the end of a loop, it will break at the end of the first pass of

the loop.

The program can then be continued. The breakpoint will cause the program to halt at

the end of each repetition.

To record the values of variables each time a breakpoint is reached.

• List each variable along the top.

• Work through the program line by line and record the values of all variables

every time the breakpoint is reached.

Example

Line 1 FUNCTION findMinimum (ARRAY OF INTEGER list)

RETURNS INTEGER

Line 2 DECLARE min INITIALLY list[0]

Line 3 FOR index FROM 1 TO length(list)-1 DO

Line 4 IF min < list[index] THEN

Line 5 Min = list[index]

Line 6 END IF

Line 7 END FOR

Line 8 RETURN min

Line 9 END FUNCTION

Line List Min index

Break 1 [4,5,2,1,3] 4 1

Break 2 [4,5,2,1,3] 2 2

Break 3 [4,5,2,1,3] 1 3

Break 4 [4,5,2,1,3] 1 4

Breakpoint is shown at line 7

Trace Tools

Trace tools are a debugging feature of some programming environments.

Trace tools allow the program to be executed but the programmer can step through

one line at a time.

This lets the programmer view the line of code being executed.

Breakpoints

Breakpoints are another debugging feature of some programming environments.

Setting a breakpoint sets a point in the code where the program will stop

execution.

Breakpoints are set to stop executing at a particular line of code.

Once the program has stopped, the values of variables can be examined and

recorded in a trace table.

Watchpoint

A watchpoint is similar to a breakpoint but it does not depend on reaching a

particular line of code.

Instead, the program is set to stop executing when the value of a variable changes.

Again, once the program has stopped, the values of variables can be inspected and

recorded in a trace table.

PRACTISE QUESTIONS

Question 1 (2019 Qu 10c)

A shop has a unique product code for each item it sells, for example X756. The

linear search algorithm shown below is used to find the position of a product code in

an array.

The array of unique product codes is shown below.

The product code ‘F333’ is entered. It is not in the array.

State the type of error. Explain your answer. (2)

Question 2 (2018 Qu15)

SportsStats is a program that processes the results of athletics competitions. The

results of two different heats are compared to find which heat had the fastest time.

A) Testing reveals an error in the function. The function is first called during

execution of line 23 of the main program. In order to identify this error, a

watchpoint has been set to show the value of the min variable each time it

is changed. Complete the table to show the values that would be shown

when this watchpoint is triggered. (3)

B) Testers report that the program sometimes outputs the incorrect result.

(i) Identify the error in the function that causes incorrect output. (1)

(ii) State the type of error that has caused this issue. (1)

(iii) Explain why the incorrect code outputs the correct statement. Your answer

should make reference to the original heat results shown on lines 21 and 22 of the

code. (2)

EVALUATION STAGE

During the Evaluation Stage, the overall success of the entire project is considered.

This is an objective review of the software to establish whether it meets the required

criteria.

An evaluation report would discuss the following aspects of the solution.

FITNESS FOR PURPOSE

This reflects whether the software carries out all the tasks required of the software

specification.

Your evaluation should identify any discrepancies between the software specification

and the completed software.

EFFICIENT USE OF CODING CONSTRUCTS

This reflects whether the software writers have used their knowledge of constructs to

help them create efficient code. For example using:

• suitable data types or structures

• conditional or fixed loops

• arrays

• nested selection

• procedures or functions with parameter passing

Your evaluation should identify where your coding has been efficient.

USABILITY

This reflects how intuitive the software is from a user’s perspective and should

include:

• the general user interface

• the user prompts

• the screen layout

• any help screens

Your evaluation should identify features of the software that have enhanced usability

for the user.

MAINTAINABILITY

This reflects how easy it is to alter the software. The factors affecting maintainability

include:

• readability of the code — made easier by using meaningful variable names,
comments, indentation and whitespace

• amount of modularity — using functions and procedures effectively

Your evaluation should identify how your code helps with the maintainability of the

software.

ROBUSTNESS

This reflects how well the software copes with errors during execution including:

• exceptional data, e.g. the computer crashing if “out of range”

• incorrect data entered

Your evaluation should reflect the testing that has been undertaken to meet the

specification, as well as to demonstrate some degree of robustness.

PRACTISE QUESTIONS

Look back at your code for the Olympics task.

With reference to your own program code, evaluate:

a) the fitness for purpose of your program (1)

b) the maintainability of your program with reference to readability and
modularity (2)

