

## **Database Design & Development: Revision Questions 3**

1. GlenSki offers on-to-one skiing lessons at a number of ski resorts in Scotland. Instructors are based at a resort, and customers can book several lessons on one day. A relational database is used to store the data as follows.

| Customer      | Lesson           | Resort          | Instructor   |  |
|---------------|------------------|-----------------|--------------|--|
| CustomerID    | InstructorID*    | <u>ResortID</u> | InstructorID |  |
| FirstName     | <u>StartTime</u> | Name            | FirstName    |  |
| Surname       | <u>Date</u>      | Postcode        | Surname      |  |
| ContactNumber | Duration         | Lifts           | ResortID*    |  |
| EmailAddress  | CustomerID*      |                 |              |  |

- a) Draw an entity relationship diagram to show the relationships that exist in this database. 3
- b) State the primary key used to uniquely identify the Lesson table.
- c) The following report was generated to show an instructor a list of the lessons that they will deliver on a specific date.

| $\left( \right)$ | GlenSki                     | 17/12/            | '18              | Instructor: 14 |
|------------------|-----------------------------|-------------------|------------------|----------------|
|                  | Daily Schedule              | Fred, y           | our lessons toda | y are:         |
|                  |                             | 0.00              |                  | ~              |
|                  | Rafal Avila<br>Martin Iskra | 9.00am<br>11.00am |                  | M              |
|                  | Daniella Smith              | 12.15pm           |                  | $\Delta$       |
|                  | Rafal Avila                 | 3.00nm            |                  |                |
| $\overline{\ }$  | Number of                   | essons: 4         |                  |                |

The report was based on the result of a query. The report has also been used to display the "Number of lessons" using an aggregate function. Write an SQL operation used to select the data shown in the report. 5

 d) State the aggregate function that has been used to display the "Number of Lessons" shown as part of this report.

1









- 2. Lyndsay and Jindra attend St Andrew's Primary School and Kerry attends Hillview Primary School.
  - (a) Draw an entity occurrence model to illustrate the relationship between primary school and pupil. 2
  - (b) State the *cardinality* of the relationship between primary school and pupil.
- 3. Inverdon Electrical is a small company supplying electrical goods to a few shops in the local area. The structure of the data model they intend to use is shown below.

| Customer                                                                          | Order                                                                                   | Supplier                                                       | Item                                                                |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------|
| <u>Customer number</u><br>Customer name<br>Customer address<br>Customer telephone | <u>Item number</u> *<br><u>Order date</u><br><u>Customer number</u> *<br>Number ordered | <u>Supplier name</u><br>Supplier address<br>Supplier telephone | <u>Item number</u><br>Item name<br>Price<br>Photo<br>Supplier name* |

- (a) Draw an *entity relationship diagram* to represent this data model.
- (b) The following data dictionary represents the Item entity. It has a number of missing entries which are highlighted as A, B, C, D and E. State a suitable entry for each of the missing values.

| Attribute     | Data Type | Validation         | Unique | Index | Key |
|---------------|-----------|--------------------|--------|-------|-----|
| Item number   | Α         | >=1000 and <=9999  | Y      | Y     | PK  |
| Item name     | Text      |                    | N      | Y     |     |
| Price         | В         | >0.50 and <1000.00 | N      | N     |     |
| Photo         | С         |                    | N      | N     |     |
| Supplier name | Text      | D                  | E      | Y     | FK  |

5

6

1





4. A health centre uses a single table database. Below is a record from this database. The primary key, Patient No, is created from the patient's initials and date of birth.

| Patient No      | HR270985                           |
|-----------------|------------------------------------|
| Name            | Helen Robertson                    |
| Address         | 23 Gordon Road<br>Perth<br>PG3 6TY |
| Date of Birth   | 27/09/1985                         |
| Doctor's Name   | Dr Ritchie                         |
| Doctor's Tel No | 0845 5678348                       |
| Doctor's Room   | 5                                  |

- (a) State two problems with using the meaningful identifier, Patient No, as a primary key. 2
- (b) Explain why storing the address as a single attribute is not good database design.

2