
Higher

Computing Science

Software Design and Development

Development Methodologies, Analysis &

Design

NAME:_________________________

Contents

Name:_________________________... 1

Development Methodologies .. 3

Iterative Development Process ... 3

Key Features ... 3

Agile Methodologies ... 4

Sprints ... 5

Agile Disadvantages ... 5

Key Features ... 5

Iterative vs Agile ... 6

Practise Questions .. 8

Analysis Stage ... 9

Analysis Tasks .. 9

Inputs, Processes, Outputs ... 9

Pratise Questions ... 11

Design .. 12

Top-Down Design / Stepwise Refinement .. 12

Design Techniques ... 13

Pseudocode .. 13

Structure Diagrams ... 14

Wireframe (User Interface Design) ... 15

DEVELOPMENT METHODOLOGIES

ITERATIVE DEVELOPMENT PROCESS

In an iterative development process, software is developed in a sequence of stages.

Each stage takes information from the previous stage and provides information to

the next.

There are seven stages to this software development process.

Software development is an iterative process.

At any point, it may be necessary to revisit earlier

stages.

This could be in order to make improvements due to

new information or the presence of errors.

Key Features

• Client heavily involved in the initial analysis stage and at the end of
development, but not consulted during development.

• Teams of analysts, programmers, testers and documenters work
independently on each phase of development with limited communication.

• A lot of time spent at the beginning of the process creating a detailed project
specification.

• Follows a strict plan, with progress measured against timescales set at the
beginning of the project.

• A predictive methodology, focusing on analysing and planning the future in
detail and catering for known risks.

• Testing is carried out when the full implementation phase of the project is
complete.

AGILE METHODOLOGIES

Agile development emphasises real time, face-to-face communication involving all

the people necessary to finish the software.

Very little written documentation is produced.

Software is developed in short iterations, each one like a miniature software project

of its own.

The purpose of a single iteration is not to produce the final completed solution, but to

add additional functionality that produces working software. After each iteration the

project priorities are then re-evaluated.

Iterative development attempts to produce software by assuming a perfect

understanding of the client’s requirements from the start. In reality however, it rarely

delivers what the client wants as the client often doesn’t know exactly what they want

until they see it.

Agile methodologies embrace short iterations (Sprints) where small teams work to

develop working software that builds on the previous iteration.

During each iteration, working software is produced following which the requirements

for the next iteration can be evaluated.

Sprints

• A sprint is a planned delivery schedule for an aspect of the system. Within a
sprint the principles of analysis, design, implementation and testing are used.

• Prototyping is also likely, particularly during the early phase of a sprint.

• Sprints are carried out for each area of development, so rather than having a
rigid set of steps to follow for the development of the entire system, several
steps are repeated in one sprint and then carried out again in the next sprint.

Agile Disadvantages

• The main drawback of agile methods is that following a sequence of sprints
and engaging in near daily communication is very time consuming.

• The emphasis on team work and communication in a face to face manner
means that long term, large scales projects are often unrealistic.

• Agile methods tend to suit small scale development better than large scale
development.

Key Features

• Client is involved throughout the process, giving constant feedback on
prototypes of the software during development.

• Feedback is acted upon, quickly ensuring the software evolves throughout the
project.

• Teams of developers communicate and collaborate, rather than teams of
experts operating in isolation.

• Agile focuses on reducing documentation. It spends time on small cycles of
coding, testing and adapting to change.

• Progress is measured by the time it takes to produce prototypes or working
components of the software. Focus is on delivering software as quickly as
possible.

• An adaptive methodology, focusing on adapting quickly to changing realities.
When the needs of a project change, an adaptive team changes as well.

• There is no recognised testing phase, as testing is carried out in conjunction
with programming.

ITERATIVE VS AGILE

Iterative (Waterfall Model) Agile

Client Interaction

The client is heavily involved
in the initial analysis stage
and at the end of
development, when
evaluating if the software
meets their needs and
matches the agreed
specification.

The client is involved
throughout the process, giving
constant feedback on
prototypes of the software
during development. This
feedback is acted upon,
quickly ensuring the software
evolves throughout the
project. Changing goals during
the development can be
positive in terms of final client
satisfaction with the product.

Teamwork

Teams of analysts,
programmers, testers and
documenters work
independently on each
phase of development.
Teams mainly work in
isolation with some
communication required
between each phase.

Teams of developers
communicate and collaborate,
rather than teams of experts
operating in isolation.
During a project, fast, face-to-
face communication between
individuals with different skills
is an important factor in
progressing the project
quickly.

Documentation

A detailed project
specification is created at
the beginning of a project.
Significant time is spent
during the project on design,
program commentary and
test plans.

While modelling solutions
remains important, creating
large documents that are
never updated or referred to
again upon completion of the
project are not.

Agile focuses on reducing
documentation. It spends time
on small cycles of coding,
testing and adapting to
change.

Any documentation produced
(for example internal
commentary in code) should
focus purely on progressing
the project.

Measurement of
progress

Follows a strict plan, with
progress measured against
timescales set at the
beginning of the project.

Breaks a project down into a
series of short development
goals (often called “sprints”).
This involves cross-functional
teams working on: planning,
analysis, design, coding, unit
testing, and acceptance
testing.
Progress is measured by the
time it takes to produce
prototypes or working
components of the software.
Agile focuses on delivering
software as quickly as
possible.

Adaptive vs
predictive

A predictive methodology,
focusing on analysing and
planning the future in detail
and catering for known risks.
Predictive methods rely on
effective early phase
analysis and if this goes very
wrong, the project may have
difficulty changing direction.
Predictive teams often
institute a change control
board to ensure they
consider only the most
valuable changes.

An adaptive methodology,
focusing on adapting quickly
to changing realities. When
the needs of a project change,
an adaptive team changes as
well.
An adaptive team has difficulty
describing exactly what they
will do next week but could
report on which features they
plan for next month.
The further away a date is, the
vaguer an adaptive method is
about what will happen on that
date.

Testing

Testing is carried out when
the implementation phase of
the project is complete.

There is no recognised testing
phase, as testing is carried out
in conjunction with
programming.

PRACTISE QUESTIONS

Question 1 (2019 Qu 5)

Describe the role of the client when developing software using agile methodologies.

(2)

Question 2 (SQP Qu 2)

A developer and their client are based in different time zones in the world. Explain

the impact that this can have when using an agile methodology compared to an

iterative one. (1)

ANALYSIS STAGE

This is the start of the software development process and defines the extent of the

software task. This is called the software specification. It is often the basis of a legal

contract between the client (customer) and the software company writing the

software.

ANALYSIS TASKS

Your analysis should include the following:

• Purpose: a general description of the purpose of the software.

• Scope: a list of the deliverables that the project will hand over to the client
and/or end-user, eg design, completed program, test plan, test results and
evaluation report. It can also include any time limits for the project.

• Boundaries: the limits that help to define what is in the project and what is
not. It can also clarify any assumptions made by the software developers
regarding the client’s requirements.

• Functional requirements: the features and functions that must be delivered
by the system in terms of inputs, processes and outputs.

INPUTS, PROCESSES, OUTPUTS

• Inputs are data items that must be entered by the user. Information we have
to ask the user for. This is the data that the program will take in.

• Processes are the things the program will do with the data items.
Calculations, formatting etc. are processes.

• Outputs are the data items that will be displayed by our program. This will
usually be the result of what the program is supposed to do.

Example:

Purpose

The purpose of this program is to take 20 pupil names, their prelim marks and their

assignment marks from a file. Calculate the percentage, and then find and display the name

and percentage of the pupil with the highest percentage.

Scope

This development involves creating a modular program. The deliverables include:

• detailed design of the program structure

• test plan with completed test data table

• working program

• results of testing

• evaluation report

This development work must be completed within 4 hours.

Boundaries

The program will read the pupil data (name, prelim mark and assignment mark) for 20 pupils

from a sequential file. The data is accurate, so there is no need to implement input

validation.

The pupil with the top mark will be the pupil who has the highest percentage. The only output

needed is the name and percentage of the pupil with the highest percentage.

Functional Requirements

These are defined in terms of the inputs, processes and outputs detailed below. All inputs

are imported from a sequential file and all outputs displayed on the screen. The program is

activated by double clicking on the file icon and then selecting “Run” from the menu. Each

process should be a separate procedure or function that is called from the main program.

Inputs: Pupil name

Prelim mark

Assignment mark

Processes: Calculate the percentage for each pupil

Find the name and percentage of the pupil with the highest percentage

Outputs: Name of the pupil with the highest percentage

The highest percentage

PRATISE QUESTIONS

Question 1 (2019 Qu 11a)

A car manufacturer includes an event data recorder in their cars. This device begins

recording when the car’s sensors detect a sudden change in speed. The data

captured can be analysed when required. A sample of data is shown below.

When triggered by a sensor this data is sampled 10 times per second for 20

seconds. Software is to be developed that can analyse the data captured from a

car’s event data recorder.

During the analysis stage boundaries are identified. State two boundaries for this

task. (2)

DESIGN

TOP-DOWN DESIGN / STEPWISE REFINEMENT

Top-down design involves identifying an overall problem and breaking it down into

smaller sub-problems (main steps).

The process of stepwise refinement is then used to break the sub-problems down

until each one is small enough that they are manageable.

Top-down design emphasises planning and a complete understanding of the system.

No coding should take place until a sufficient level of detail has been reached in the

design.

Each sub-problem is coded as a module however this delays testing of the functional

units until significant design is complete.

DESIGN TECHNIQUES

Pseudocode

When using pseudocode to design efficient solutions to a problem, you must include

the following:

• Top level design — the major steps of the design. In the example below,
numbered from 1 to 4.

• Data flow — shows the information that must flow In or Out from the sub-
programs. In the example below, written to the right of the top level design.

• Refinements — break down the design from the top level when required. In
the example below, numbered as a sub-number of the top level.

Example:

The following design is for a program that will read the name, prelim mark and coursework

mark for a class of 20 pupils from a file. It will calculate a percentage from each of their

prelim marks and coursework marks added together. It will then display the name of the

pupil with the highest percentage and their percentage.

Main Steps Data Flow

1 Get results (OUT: pupil name(), prelim mark(), course mark())
2 Calculate percentages (IN: prelim mark(), course mark() OUT: percentage())
3 Find position of pupil with top mark (IN: percentage() OUT: top position)
4 Display pupil with top mark (IN: pupil name(), top position)

Refinements
1.1 Open marks file
1.2 Start fixed loop for each pupil
1.3 Get pupil name()
1.4 Get prelim mark()
1.5 Get course mark()
1.6 End fixed loop
1.7 Close marks file

2.1 Start fixed loop for each pupil
2.2 percentage() equals (prelim mark() + course mark()) divided by 1.5
2.3 End fixed loop

3.1 top position equals first position
3.2 Start fixed loop from second pupil
3.3 If percentage() is greater than current top percentage Then
3.4 set position as new top position
3.5 End If
3.6 End fixed loop

4.1 Display “Top pupil is”, pupil name(top position), “with”, percentage(top position),
“percent”

Structure Diagrams

The following structure diagram solves the same problem as the pseudocode:

• Top level design — the major steps of the design.

• Data flow — shows the information that must flow In or Out from the sub-
programs. In the example below, written underneath the top level design with
an arrow showing whether they are in or out.

• Refinements — break down the design from the top level into smaller steps.
They can be shown separately from the top level design or below the top level
design.

WIREFRAME (USER INTERFACE DESIGN)

The design of the user interface (the visual layout that allows the user to interact with

the programming code) can be represented using a wireframe diagram.

A wireframe diagram is a visual representation of how the user interface will look and

it will show the position of different elements such as text, graphics, navigation etc. It

is also used as a visual representation to demonstrate the input and output of a

program.

A wireframe diagram can be a detailed sketch or detailed image as shown below.

The wireframe diagram should clearly show the program input and output.

Exam Mark Program

Input – text

box to display

the name,

prelim mark

and

coursework of

each pupil.

This will be

read in from a

file.

Title of the program

Click to read data

Button for the user to read in

program inputs from file

Click to calculate

Button for the user to calculate

percentage and find pupil with

top mark

Output –

text box to

display the

percentage

, name and

position of

the top

pupil.

